Craig L Peterson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6916472/publications.pdf

Version: 2024-02-01

107 papers 13,832 citations

55 h-index 35168 102 g-index

127 all docs

 $\begin{array}{c} 127 \\ \text{docs citations} \end{array}$

times ranked

127

14272 citing authors

#	Article	IF	Citations
1	SWI/SNF senses carbon starvation with a pH-sensitive low-complexity sequence. ELife, 2022, 11, .	2.8	23
2	Fluorescence approaches for biochemical analysis of ATP-dependent chromatin remodeling enzymes. Methods in Enzymology, 2022, , .	0.4	1
3	Functional interaction between the RNA exosome and the sirtuin deacetylase Hst3 maintains transcriptional homeostasis. Genes and Development, 2022, 36, 17-22.	2.7	6
4	Mechanism of Long-Range Chromosome Motion Triggered by Gene Activation. Developmental Cell, 2020, 52, 309-320.e5.	3.1	32
5	Multivalent interactions drive nucleosome binding and efficient chromatin deacetylation by SIRT6. Nature Communications, 2020, $11,5244$.	5.8	36
6	INO80C Remodeler Maintains Genomic Stability by Preventing Promiscuous Transcription at Replication Origins. Cell Reports, 2020, 32, 108106.	2.9	9
7	Distinct transcriptional roles for Histone H3-K56 acetylation during the cell cycle in Yeast. Nature Communications, 2019, 10, 4372.	5.8	40
8	Yeast Sirtuin Family Members Maintain Transcription Homeostasis to Ensure Genome Stability. Cell Reports, 2019, 27, 2978-2989.e5.	2.9	22
9	Transient Kinetic Analysis of SWR1C-Catalyzed H2A.Z Deposition Unravels the Impact of Nucleosome Dynamics and the Asymmetry of Histone Exchange. Cell Reports, 2019, 27, 374-386.e4.	2.9	26
10	SIR proteins create compact heterochromatin fibers. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12447-12452.	3.3	17
11	Nucleosome-like, Single-stranded DNA (ssDNA)-Histone Octamer Complexes and the Implication for DNA Double Strand Break Repair. Journal of Biological Chemistry, 2017, 292, 5271-5281.	1.6	33
12	Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nature Reviews Molecular Cell Biology, 2017, 18, 407-422.	16.1	828
13	Chromatin remodeling: a complex affair. EMBO Reports, 2017, 18, 1673-1674.	2.0	7
14	Mot1, Ino80C, and NC2 Function Coordinately to Regulate Pervasive Transcription in Yeast and Mammals. Molecular Cell, 2017, 67, 594-607.e4.	4.5	42
15	Nucleosomes influence multiple steps during replication initiation. ELife, 2017, 6, .	2.8	58
16	RNA polymerase II depletion promotes transcription of alternative mRNA species. BMC Molecular Biology, 2016, 17, 20.	3.0	5
17	Response to Comment on "A histone acetylation switch regulates H2A.Z deposition by the SWR-C remodeling enzymeâ€. Science, 2016, 353, 358-358.	6.0	12
18	Hsp90 and p23 Molecular Chaperones Control Chromatin Architecture by Maintaining the Functional Pool of the RSC Chromatin Remodeler. Molecular Cell, 2016, 64, 888-899.	4.5	42

#	Article	IF	Citations
19	Genomic Nucleosome Organization Reconstituted with Pure Proteins. Cell, 2016, 167, 709-721.e12.	13.5	227
20	The Ino80 complex prevents invasion of euchromatin into silent chromatin. Genes and Development, 2015, 29, 350-355.	2.7	38
21	SWI/SNF recruitment to a DNA double-strand break by the NuA4 and Gcn5 histone acetyltransferases. DNA Repair, 2015, 30, 38-45.	1.3	40
22	Structural analyses of the chromatin remodelling enzymes INO80-C and SWR-C. Nature Communications, 2015, 6, 7108.	5.8	61
23	The Histone Chaperones FACT and Spt6 Restrict H2A.Z from Intragenic Locations. Molecular Cell, 2015, 58, 1113-1123.	4.5	108
24	Chromatin Dynamics and the RNA Exosome Function in Concert to Regulate Transcriptional Homeostasis. Cell Reports, 2015, 13, 1610-1622.	2.9	34
25	Deposition of histone H2A.Z by the SWR-C remodeling enzyme prevents genome instability. DNA Repair, 2015, 25, 9-14.	1.3	15
26	A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation. PLoS ONE, 2015, 10, e0126420.	1.1	71
27	Direct interactions promote eviction of the Sir3 heterochromatin protein by the SWI/SNF chromatin remodeling enzyme. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17827-17832.	3.3	14
28	Chromatin dynamics: Interplay between remodeling enzymes and histone modifications. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 728-736.	0.9	194
29	Solution-state conformation and stoichiometry of yeast Sir3 heterochromatin fibres. Nature Communications, 2014, 5, 4751.	5.8	19
30	A Histone Acetylation Switch Regulates H2A.Z Deposition by the SWR-C Remodeling Enzyme. Science, 2013, 340, 195-199.	6.0	168
31	Chromatin and the genome integrity network. Nature Reviews Genetics, 2013, 14, 62-75.	7.7	193
32	Releasing the brakes on a chromatin-remodeling enzyme. Nature Structural and Molecular Biology, 2013, 20, 5-7.	3.6	13
33	Nucleosome dynamics regulates DNA processing. Nature Structural and Molecular Biology, 2013, 20, 836-842.	3.6	130
34	DNA repair choice defines a common pathway for recruitment of chromatin regulators. Nature Communications, 2013, 4, 2084.	5.8	81
35	Chromatin dynamics. Cell Cycle, 2013, 12, 2337-2338.	1.3	4
36	Nucleosome Dynamics as Modular Systems that Integrate DNA Damage and Repair. Cold Spring Harbor Perspectives in Biology, 2013, 5, a012658-a012658.	2.3	46

#	Article	IF	CITATIONS
37	DNA repair choice defines a common pathway for recruitment of chromatin regulators. FASEB Journal, 2013, 27, 760.2.	0.2	0
38	SWI/SNF remodels SIR3 heterochromatin during transcription. FASEB Journal, 2013, 27, 770.6.	0.2	0
39	A histone acetylation switch regulates H2A.Z deposition by the SWR remodeling enzyme. FASEB Journal, 2013, 27, 770.4.	0.2	0
40	Chromatin remodeling by the SWI/SNF complex is essential for transcription mediated by the yeast cell wall integrity MAPK pathway. Molecular Biology of the Cell, 2012, 23, 2805-2817.	0.9	50
41	Global Regulation of H2A.Z Localization by the INO80 Chromatin-Remodeling Enzyme Is Essential for Genome Integrity. Cell, 2011, 144, 200-213.	13.5	345
42	The Ins and Outs of Heterochromatic DNA Repair. Developmental Cell, 2011, 20, 285-287.	3.1	7
43	SWI/SNF- and RSC-Catalyzed Nucleosome Mobilization Requires Internal DNA Loop Translocation within Nucleosomes. Molecular and Cellular Biology, 2011, 31, 4165-4175.	1.1	14
44	Transcriptional Memory: Mothers SET the Table for Daughters. Current Biology, 2010, 20, R240-R242.	1.8	3
45	Opening the DNA repair toolbox: Localization of DNA double strand breaks to the nuclear periphery. Cell Cycle, 2010, 9, 43-49.	1.3	29
46	Protein Complex Binding to Promoter DNA: Immobilized Template Assay. Cold Spring Harbor Protocols, 2010, 2010, pdb.prot5465.	0.2	1
47	Structural characterization of H3K56Q nucleosomes and nucleosomal arrays. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2010, 1799, 480-486.	0.9	49
48	Chromatin dynamics during repair of chromosomal DNA double-strand breaks. Epigenomics, 2009, 1, 371-385.	1.0	54
49	Recombinational Repair within Heterochromatin Requires ATP-Dependent Chromatin Remodeling. Cell, 2009, 138, 1109-1121.	13.5	73
50	Role of chromatin states in transcriptional memory. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 445-455.	1.1	43
51	Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery. Genes and Development, 2009, 23, 912-927.	2.7	279
52	The Ino80 chromatin-remodeling enzyme regulates replisome function and stability. Nature Structural and Molecular Biology, 2008, 15, 338-345.	3.6	143
53	A Rad51 Presynaptic Filament Is Sufficient to Capture Nucleosomal Homology during Recombinational Repair of a DNA Double-Strand Break. Molecular Cell, 2008, 30, 803-810.	4.5	30
54	Chicken Erythrocyte Histone Octamer Preparation. Cold Spring Harbor Protocols, 2008, 2008, pdb.prot5112.	0.2	9

#	Article	IF	CITATIONS
55	Salt Gradient Dialysis Reconstitution of Nucleosomes. Cold Spring Harbor Protocols, 2008, 2008, pdb.prot5113.	0.2	4
56	Architecture of the SWI/SNF-Nucleosome Complex. Molecular and Cellular Biology, 2008, 28, 6010-6021.	1.1	125
57	SWI/SNF is required for transcriptional memory at the yeast GAL gene cluster. Genes and Development, 2007, 21, 997-1004.	2.7	137
58	Swi3p controls SWI/SNF assembly and ATP-dependent H2A-H2B displacement. Nature Structural and Molecular Biology, 2007, 14, 540-547.	3.6	76
59	Genome Integrity: A HAT Needs a Chaperone. Current Biology, 2007, 17, R324-R326.	1.8	11
60	Histone H4-K16 Acetylation Controls Chromatin Structure and Protein Interactions. Science, 2006, 311, 844-847.	6.0	1,881
61	Interplay between Ino80 and Swr1 chromatin remodeling enzymes regulates cell cycle checkpoint adaptationin response to DNA damage. Genes and Development, 2006, 20, 2437-2449.	2.7	162
62	DNA Translocation and Loop Formation Mechanism of Chromatin Remodeling by SWI/SNF and RSC. Molecular Cell, 2006, 24, 559-568.	4.5	198
63	Heterochromatin assembly: A new twist on an old model. Chromosome Research, 2006, 14, 83-94.	1.0	54
64	Switching on Chromatin: Mechanistic Role of Histone H4-K16 Acetylation. Cell Cycle, 2006, 5, 1361-1365.	1.3	81
65	A Conserved Swi2/Snf2 ATPase Motif Couples ATP Hydrolysis to Chromatin Remodeling. Molecular and Cellular Biology, 2005, 25, 5880-5892.	1.1	79
66	ATP-dependent and ATP-independent Roles for the Rad54 Chromatin Remodeling Enzyme during Recombinational Repair of a DNA Double Strand Break. Journal of Biological Chemistry, 2005, 280, 10855-10860.	1.6	77
67	A Rik1-associated, cullin-dependent E3 ubiquitin ligase is essential for heterochromatin formation. Genes and Development, 2005, 19, 1705-1714.	2.7	156
68	\hat{I}^3 -H2AX Dephosphorylation by Protein Phosphatase 2A Facilitates DNA Double-Strand Break Repair. Molecular Cell, 2005, 20, 801-809.	4.5	467
69	Cellular machineries for chromosomal DNA repair. Genes and Development, 2004, 18, 602-616.	2.7	253
70	The SANT domain: a unique histone-tail-binding module?. Nature Reviews Molecular Cell Biology, 2004, 5, 158-163.	16.1	338
70		16.1	1,064

#	Article	IF	Citations
73	Transcriptional Activation: Getting a Grip on Condensed Chromatin. Current Biology, 2003, 13, R195-R197.	1.8	11
74	Structural analysis of the yeast SWI/SNF chromatin remodeling complex. Nature Structural Biology, 2003, 10, 141-145.	9.7	145
75	Coupling tandem affinity purification and quantitative tyrosine iodination to determine subunit stoichiometry of protein complexes. Methods, 2003, 31, 104-109.	1.9	8
76	Recruitment of the Recombinational Repair Machinery to a DNA Double-Strand Break in Yeast. Molecular Cell, 2003, 12, 221-232.	4.5	181
77	Chromatin Remodeling Activities Act on UV-damaged Nucleosomes and Modulate DNA Damage Accessibility to Photolyase. Journal of Biological Chemistry, 2003, 278, 17655-17663.	1.6	66
78	Rad54p Is a Chromatin Remodeling Enzyme Required for Heteroduplex DNA Joint Formation with Chromatin. Journal of Biological Chemistry, 2003, 278, 9212-9218.	1.6	164
79	A Native Peptide Ligation Strategy for Deciphering Nucleosomal Histone Modifications. Journal of Biological Chemistry, 2003, 278, 15744-15748.	1.6	107
80	MOLECULAR BIOLOGY: Chromatin Higher Order Folding-Wrapping up Transcription. Science, 2002, 297, 1824-1827.	6.0	364
81	HDAC's at Work. Molecular Cell, 2002, 9, 921-922.	4.5	62
82	Essential Role for the SANT Domain in the Functioning of Multiple Chromatin Remodeling Enzymes. Molecular Cell, 2002, 10, 935-942.	4.5	224
83	TRANSCRIPTION: Unlocking the Gates to Gene Expression. Science, 2002, 295, 1847-1848.	6.0	84
84	Chromatin Remodeling: Nucleosomes Bulging at the Seams. Current Biology, 2002, 12, R245-R247.	1.8	66
85	The SIN domain of the histone octamer is essential for intramolecular folding of nucleosomal arrays. Nature Structural Biology, 2002, 9, 167-71.	9.7	31
86	Phosphorylation of linker histones regulates ATP-dependent chromatin remodeling enzymes. Nature Structural Biology, 2002, 9, 263-267.	9.7	160
87	Chromatin remodeling enzymes: taming the machines. EMBO Reports, 2002, 3, 319-322.	2.0	73
88	SWI/SNF Chromatin Remodeling Requires Changes in DNA Topology. Molecular Cell, 2001, 7, 97-104.	4.5	109
89	The Interactions of Yeast SWI/SNF and RSC with the Nucleosome before and after Chromatin Remodeling. Journal of Biological Chemistry, 2001, 276, 12636-12644.	1.6	49
90	Chromatin remodeling enzymes: who's on first?. Current Biology, 2001, 11, R185-R197.	1.8	234

#	Article	IF	CITATIONS
91	Recruitment of chromatin remodeling machines. , 2000, 78, 179-185.		72
92	Actin-related proteins (Arps): conformational switches for chromatin-remodeling machines?. BioEssays, 2000, 22, 666-672.	1.2	63
93	Functional Delineation of Three Groups of the ATP-dependent Family of Chromatin Remodeling Enzymes. Journal of Biological Chemistry, 2000, 275, 18864-18870.	1.6	95
94	SWI-SNF-Mediated Nucleosome Remodeling: Role of Histone Octamer Mobility in the Persistence of the Remodeled State. Molecular and Cellular Biology, 2000, 20, 3058-3068.	1.1	94
95	Roles of the Histone H2A-H2B Dimers and the (H3-H4)2Tetramer in Nucleosome Remodeling by the SWI-SNF Complex. Journal of Biological Chemistry, 2000, 275, 11545-11552.	1.6	38
96	Promoter targeting and chromatin remodeling by the SWI/SNF complex. Current Opinion in Genetics and Development, 2000, 10, 187-192.	1.5	404
97	Global Role for Chromatin Remodeling Enzymes in Mitotic Gene Expression. Cell, 2000, 102, 587-598.	13.5	213
98	ATP-dependent chromatin remodeling: going mobile. FEBS Letters, 2000, 476, 68-72.	1.3	52
99	Actinâ€related proteins (Arps): conformational switches for chromatinâ€remodeling machines?. BioEssays, 2000, 22, 666-672.	1.2	1
100	The Core Histone N-Terminal Domains Are Required for Multiple Rounds of Catalytic Chromatin Remodeling by the SWI/SNF and RSC Complexesâ€. Biochemistry, 1999, 38, 2514-2522.	1.2	73
101	The SWI/SNF Complex Creates Loop Domains in DNA and Polynucleosome Arrays and Can Disrupt DNA-Histone Contacts within These Domains. Molecular and Cellular Biology, 1999, 19, 1470-1478.	1.1	143
102	Chromatin remodeling: a marriage between two families?. BioEssays, 1998, 20, 771-780.	1.2	105
103	The Biochemical and Phenotypic Characterization of Hho1p, the Putative Linker Histone H1 of Saccharomyces cerevisiae. Journal of Biological Chemistry, 1998, 273, 7268-7276.	1.6	132
104	Subunits of the Yeast SWI/SNF Complex Are Members of the Actin-related Protein (ARP) Family. Journal of Biological Chemistry, 1998, 273, 23641-23644.	1.6	127
105	Multiple SWItches to turn on chromatin?. Current Opinion in Genetics and Development, 1996, 6, 171-175.	1.5	132
106	DNA-binding properties of the yeast SWI/SNF complex. Nature, 1996, 379, 844-847.	13.7	184
107	Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription. Cell, 1992, 68, 573-583.	13.5	610