Hai-Feng Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6915803/publications.pdf

Version: 2024-02-01

58	950	16	29
papers	citations	h-index	g-index
59	59	59	1188
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Fiber-Optic SPR Sensor for Temperature Measurement. IEEE Transactions on Instrumentation and Measurement, 2015, 64, 3099-3104.	4.7	97
2	Fiber-Optic Refractive Index Sensor Based on Multi-Tapered SMS Fiber Structure. IEEE Sensors Journal, 2015, 15, 6348-6353.	4.7	65
3	Review on the Optimization Methods of Slow Light in Photonic Crystal Waveguide. IEEE Nanotechnology Magazine, 2015, 14, 407-426.	2.0	59
4	Highly-sensitive optical fiber temperature sensors based on PDMS/silica hybrid fiber structures. Sensors and Actuators A: Physical, 2018, 284, 22-27.	4.1	51
5	Generation of a Nondiffracting Superchiral Optical Needle for Circular Dichroism Imaging of Sparse Subdiffraction Objects. Physical Review Letters, 2019, 122, 223901.	7.8	47
6	Hydrogen sensing performance of silica microfiber elaborated with Pd nanoparticles. Materials Letters, 2018, 212, 211-213.	2.6	44
7	Recent developments in electrochemical sensors based on nanomaterials for determining glucose and its byproduct H2O2. Journal of Materials Science, 2017, 52, 10455-10469.	3.7	42
8	Efficient Midâ€Infrared Light Confinement within Subâ€5â€nm Gaps for Extreme Field Enhancement. Advanced Optical Materials, 2017, 5, 1700223.	7.3	39
9	A high sensitivity temperature sensor based on packaged microfibre knot resonator. Sensors and Actuators A: Physical, 2017, 263, 369-372.	4.1	38
10	A Ring-Core Optical Fiber Sensor With Asymmetric LPG for Highly Sensitive Temperature Measurement. IEEE Transactions on Instrumentation and Measurement, 2017, 66, 3378-3386.	4.7	32
11	Optical fiber sensing technology based on Mach-Zehnder interferometer and orbital angular momentum beam. Applied Physics Letters, 2018, 112, .	3.3	27
12	Large measurement range and high sensitivity temperature sensor with FBG cascaded Mach-Zehnder interferometer. Optics and Laser Technology, 2020, 125, 106034.	4.6	27
13	Sensing Properties of Long Period Fiber Grating Coated by Silver Film. IEEE Photonics Technology Letters, 2015, 27, 46-49.	2.5	26
14	High sensitivity internal refractive index sensor based on a photonic crystal fiber long period grating. Instrumentation Science and Technology, 2017, 45, 181-189.	1.8	23
15	Magnetic Field Measurement Using Surface Plasmon Resonance Sensing Technology Combined With Magnetic Fluid Photonic Crystal. IEEE Transactions on Instrumentation and Measurement, 2016, 65, 170-176.	4.7	22
16	A Novel Current Sensor Based on Magnetic Fluid and Fiber Loop Cavity Ring-Down Technology. IEEE Sensors Journal, 2015, 15, 6192-6198.	4.7	21
17	Highly Sensitive Refractive Index Sensor Based on Four-Hole Grapefruit Microstructured Fiber with Surface Plasmon Resonance. Plasmonics, 2017, 12, 1961-1965.	3.4	17
18	A real-time fiber mode demodulation method enhanced by convolution neural network. Optical Fiber Technology, 2019, 50, 139-144.	2.7	16

#	Article	IF	Citations
19	Dispersion Engineering of Slow Light in Ellipse-Shaped-Hole Slotted Photonic Crystal Waveguide. Journal of Lightwave Technology, 2014, 32, 2144-2151.	4.6	15
20	Fiber optic temperature sensor using the orbital angular momentum and gaussian beams. Instrumentation Science and Technology, 2017, 45, 123-136.	1.8	15
21	ÂRapid Mode Decomposition of Few-Mode Fiber By Artificial Neural Network. Journal of Lightwave Technology, 2021, 39, 6294-6300.	4.6	15
22	Flexible NWs sensors in polymer, metal oxide and semiconductor materials for chemical and biological detection. Sensors and Actuators B: Chemical, 2015, 219, 65-82.	7.8	14
23	High-sensitive Mach-Zehnder interferometers based on no-core optical fiber with large lateral offset. Sensors and Actuators A: Physical, 2018, 281, 9-14.	4.1	13
24	Theoretical Analysis and Experimental Measurement of Birefringence Properties in Magnetic Fluid Subjected to Magnetic Field. IEEE Transactions on Magnetics, 2015, 51, 1-5.	2.1	12
25	Symmetric Metaâ€Absorberâ€Induced Superchirality. Advanced Optical Materials, 2019, 7, 1901038.	7.3	12
26	Broadband generation of the first-order OAM modes in two-mode fiber by offset splicing and fiber rotating technology. Optics and Laser Technology, 2019, 112, 436-441.	4.6	12
27	Determination of refractive index by a U-shaped multimode fiber sensor. Instrumentation Science and Technology, 2018, 46, 490-501.	1.8	11
28	The phase interrogation method for optical fiber sensor by analyzing the fork interference pattern. Applied Physics B: Lasers and Optics, 2018, 124, 1.	2.2	11
29	A high sensitivity refractive index sensor based on photonic crystal fibre Mach–Zehnder interferometer. Journal of Modern Optics, 2017, 64, 1639-1647.	1.3	10
30	Polarization-Insensitive Ultra-Narrow Plasmon-Induced Transparency and Short-range Surface Plasmon Polariton Bloch Wave in Ultra-thin Metallic Film Nanostructures. Plasmonics, 2019, 14, 139-146.	3.4	10
31	Simulation on Microstructure and Optical Property of Magnetic Fluid Photonic Crystal. IEEE Transactions on Magnetics, 2014, 50, 1-12.	2.1	8
32	Phase change dispersion of plasmonic nano-objects. Scientific Reports, 2015, 5, 12665.	3.3	8
33	Unidirectional Coupling of Surface Plasmon Polaritons by a Single Slit on a Metal Substrate. IEEE Photonics Technology Letters, 2016, 28, 2395-2398.	2.5	8
34	Characterization of infrared gas sensors employing hollow-core photonic crystal fibers. Instrumentation Science and Technology, 2016, 44, 495-503.	1.8	7
35	Highly Sensitive Temperature Sensing Probe Based on Deviation S-Shaped Microfiber. Journal of Lightwave Technology, 2017, 35, 3699-3704.	4.6	7
36	Refractive index sensor based on fiber loop ring-down spectroscopy. Instrumentation Science and Technology, 2016, 44, 241-248.	1.8	6

#	Article	IF	Citations
37	Highly-sensitive phase-interrogated RI sensor based on twin-core fiber with inherent noise suppression. Optics and Lasers in Engineering, 2019, 120, 66-70.	3.8	6
38	Tunable multiple Fano resonance employing polarization-selective excitation of coupled surface-mode and nanoslit antenna resonance in plasmonic nanostructures. Scientific Reports, 2019, 9, 2414.	3.3	6
39	Enhanced Chiral Mie Scattering by a Dielectric Sphere within a Superchiral Light Field. Physics, 2021, 3, 747-756.	1.4	6
40	Achieving maximum scattering circular dichroism through the excitation of anapole states within chiral Mie nanospheres. Physical Review B, 2022, 105, .	3.2	6
41	Fiber ring resonator based slow-light and high sensitivity gas sensing technology. Sensors and Actuators B: Chemical, 2015, 214, 197-203.	7.8	5
42	Research on the glucose-sensing characteristics of gold microparticle-doped silica microfiber based on refractive index measurement. Applied Physics B: Lasers and Optics, 2016, 122, 1.	2.2	5
43	Tunable Orbital Angular Momentum Mode Conversion in Asymmetric Long Period Fiber Gratings. IEEE Photonics Technology Letters, 2017, 29, 2103-2106.	2.5	5
44	High sensitivity fibre surface plasmon resonance sensor based on silver mirror reaction. Transactions of the Institute of Measurement and Control, 2018, 40, 462-468.	1.7	4
45	A voltage measurement system based on fiber loop cavity ring-down technology using polymer dispersed liquid crystal film as sensing device. Transactions of the Institute of Measurement and Control, 2018, 40, 2303-2309.	1.7	4
46	Largeâ€Scale Subâ€1â€nm Random Gaps Approaching the Quantum Upper Limit for Quantitative Chemical Sensing. Advanced Optical Materials, 2020, 8, 2001634.	7.3	3
47	Reviews on simulation methods for the microstructure of magnetic fluid with and without applied magnetic field. International Journal of Applied Electromagnetics and Mechanics, 2014, 46, 593-610.	0.6	2
48	Highly sensitive curvature sensor based on an asymmetrical Mach–Zehnder interferometer. Instrumentation Science and Technology, 2017, 45, 605-617.	1.8	2
49	Circular Dichroism Enhancement: Symmetric Metaâ€Absorberâ€Induced Superchirality (Advanced Optical) Tj ET	Qq]] 0.78	34314 rgBT
50	Non-degenerate mode power decomposition in optical fiber without prior knowledge. Optik, 2020, 206, 164354.	2.9	2
51	Theoretical Research on Tunable Slow Light Property of a Novel Magnetic Fluid Photonic Crystal. Journal of Lightwave Technology, 2014, 32, 2181-2187.	4.6	1
52	Characterization of whispering gallery mode slow light in microspheres. Instrumentation Science and Technology, 2016, 44, 458-470.	1.8	1
53	Optical Absorbers: Nanocavity Enhancement for Ultra-Thin Film Optical Absorber (Adv. Mater. 17/2014). Advanced Materials, 2014, 26, 2736-2736.	21.0	0
54	Novel Gas Concentration Measurements based on Harmonic Detection and a Broadband Light Source. Instrumentation Science and Technology, 2015, 43, 269-282.	1.8	0

#	Article	IF	CITATIONS
55	Surface plasmon modes in single mode fiber coated with silver films. Optik, 2016, 127, 9269-9274.	2.9	O
56	High sensitive temperature response of polymer packaged microfiber knot ring. , 2018, , .		0
57	Nanogap Structures: Largeâ€Scale Subâ€1â€nm Random Gaps Approaching the Quantum Upper Limit for Quantitative Chemical Sensing (Advanced Optical Materials 24/2020). Advanced Optical Materials, 2020, 8, 2070095.	7.3	O
58	Efficient Switchable Common Path Interferometer for Transmission Matrix Characterization of Scattering Medium. IEEE Photonics Journal, 2022, 14, 1-5.	2.0	O