
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6915421/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ADPâ€ribosyltransferases, an update on function and nomenclature. FEBS Journal, 2022, 289, 7399-7410.	4.7	150
2	Beyond protein modification: the rise of non-canonical ADP-ribosylation. Biochemical Journal, 2022, 479, 463-477.	3.7	19
3	Mimetics of ADP-Ribosylated Histidine through Copper(I)-Catalyzed Click Chemistry. Organic Letters, 2022, 24, 3776-3780.	4.6	7
4	Defective ALC1 nucleosome remodeling confers PARPi sensitization and synthetic lethality with HRD. Molecular Cell, 2021, 81, 767-783.e11.	9.7	72
5	Progress and outlook in studying the substrate specificities of PARPs and related enzymes. FEBS Journal, 2021, 288, 2131-2142.	4.7	44
6	Detecting ADP-Ribosylation in RNA. Methods in Molecular Biology, 2021, 2298, 231-243.	0.9	0
7	Behavioural Characterisation of Macrod1 and Macrod2 Knockout Mice. Cells, 2021, 10, 368.	4.1	9
8	CARM1 regulates replication fork speed and stress response by stimulating PARP1. Molecular Cell, 2021, 81, 784-800.e8.	9.7	61
9	Fragment binding to the Nsp3 macrodomain of SARS-CoV-2 identified through crystallographic screening and computational docking. Science Advances, 2021, 7, .	10.3	100
10	Exploring protein hotspots by optimized fragment pharmacophores. Nature Communications, 2021, 12, 3201.	12.8	28
11	Molecular Tools for the Study of ADPâ€Ribosylation: A Unified and Versatile Method to Synthesise Native Monoâ€ADPâ€Ribosylated Peptides. Chemistry - A European Journal, 2021, 27, 10621-10627.	3.3	20
12	Unrestrained poly-ADP-ribosylation provides insights into chromatin regulation and human disease. Molecular Cell, 2021, 81, 2640-2655.e8.	9.7	52
13	Mechanistic insights into the three steps of poly(ADP-ribosylation) reversal. Nature Communications, 2021, 12, 4581.	12.8	34
14	Serine-linked PARP1 auto-modification controls PARP inhibitor response. Nature Communications, 2021, 12, 4055.	12.8	51
15	Molecular basis for DarT ADP-ribosylation of a DNA base. Nature, 2021, 596, 597-602.	27.8	41
16	Noncanonical mono(ADP-ribosyl)ation of zinc finger SZF proteins counteracts ubiquitination for protein homeostasis in plant immunity. Molecular Cell, 2021, 81, 4591-4604.e8.	9.7	17
17	TARG1 protects against toxic DNA ADP-ribosylation. Nucleic Acids Research, 2021, 49, 10477-10492.	14.5	19
18	Biallelic <i>ADPRHL2</i> mutations in complex neuropathy affect ADP ribosylation and DNA damage response. Life Science Alliance, 2021, 4, e202101057.	2.8	11

#	Article	IF	CITATIONS
19	ADP-ribosylation of DNA and RNA. DNA Repair, 2021, 105, 103144.	2.8	49
20	Serine ADP-ribosylation in DNA-damage response regulation. Current Opinion in Genetics and Development, 2021, 71, 106-113.	3.3	19
21	ADP-ribosylation systems in bacteria and viruses. Computational and Structural Biotechnology Journal, 2021, 19, 2366-2383.	4.1	33
22	The regulatory landscape of the human HPF1- and ARH3-dependent ADP-ribosylome. Nature Communications, 2021, 12, 5893.	12.8	45
23	The Making and Breaking of Serine-ADP-Ribosylation in the DNA Damage Response. Frontiers in Cell and Developmental Biology, 2021, 9, 745922.	3.7	12
24	Bridging of DNA breaks activates PARP2–HPF1 to modify chromatin. Nature, 2020, 585, 609-613.	27.8	90
25	HPF1 completes the PARP active site for DNA damage-induced ADP-ribosylation. Nature, 2020, 579, 598-602.	27.8	172
26	Pathogenic ARH3 mutations result in ADP-ribose chromatin scars during DNA strand break repair. Nature Communications, 2020, 11, 3391.	12.8	25
27	(ADP-ribosyl)hydrolases: structure, function, and biology. Genes and Development, 2020, 34, 263-284.	5.9	124
28	DNA ADP-Ribosylation Stalls Replication and Is Reversed by RecF-Mediated Homologous Recombination and Nucleotide Excision Repair. Cell Reports, 2020, 30, 1373-1384.e4.	6.4	33
29	Viral macrodomains: a structural and evolutionary assessment of the pharmacological potential. Open Biology, 2020, 10, 200237.	3.6	60
30	Reversible ADP-ribosylation of RNA. Nucleic Acids Research, 2019, 47, 5658-5669.	14.5	106
31	ADP-ribosylation signalling and human disease. Open Biology, 2019, 9, 190041.	3.6	76
32	NR4A Nuclear Receptors Target Poly-ADP-Ribosylated DNA-PKcs Protein to Promote DNA Repair. Cell Reports, 2019, 26, 2028-2036.e6.	6.4	12
33	Viral Macrodomains: Unique Mediators of Viral Replication and Pathogenesis. Trends in Microbiology, 2018, 26, 598-610.	7.7	93
34	Discovery and Characterization of ZUFSP/ZUP1, a Distinct Deubiquitinase Class Important for Genome Stability. Molecular Cell, 2018, 70, 150-164.e6.	9.7	142
35	Specificity of reversible ADP-ribosylation and regulation of cellular processes. Critical Reviews in Biochemistry and Molecular Biology, 2018, 53, 64-82.	5.2	82
36	(ADP-ribosyl)hydrolases: Structural Basis for Differential Substrate Recognition and Inhibition. Cell Chemical Biology, 2018, 25, 1533-1546.e12.	5.2	52

#	Article	IF	CITATIONS
37	PARPs in genome stability and signal transduction: implications for cancer therapy. Biochemical Society Transactions, 2018, 46, 1681-1695.	3.4	56
38	Interplay of Histone Marks with Serine ADP-Ribosylation. Cell Reports, 2018, 24, 3488-3502.e5.	6.4	76
39	Monitoring Poly(ADP-ribosyl)glycohydrolase Activity with a Continuous Fluorescent Substrate. Cell Chemical Biology, 2018, 25, 1562-1570.e19.	5.2	16
40	Synthetic α- and β-Ser-ADP-ribosylated Peptides Reveal α-Ser-ADPr as the Native Epimer. Organic Letters, 2018, 20, 4140-4143.	4.6	42
41	Serine is the major residue for ADP-ribosylation upon DNA damage. ELife, 2018, 7, .	6.0	167
42	MacroD1 Is a Promiscuous ADP-Ribosyl Hydrolase Localized to Mitochondria. Frontiers in Microbiology, 2018, 9, 20.	3.5	42
43	Hydrolysis of ADP-Ribosylation by Macrodomains. Methods in Molecular Biology, 2018, 1813, 215-223.	0.9	0
44	Serine ADP-Ribosylation Depends on HPF1. Molecular Cell, 2017, 65, 932-940.e6.	9.7	249
45	<scp>ADP</scp> â€ribosylation: new facets of an ancient modification. FEBS Journal, 2017, 284, 2932-2946.	4.7	114
46	MacroH2A1.1 regulates mitochondrial respiration by limiting nuclear NAD+ consumption. Nature Structural and Molecular Biology, 2017, 24, 902-910.	8.2	54
47	Discovery of a Selective Allosteric Inhibitor Targeting Macrodomain 2 of Polyadenosine-Diphosphate-Ribose Polymerase 14. ACS Chemical Biology, 2017, 12, 2866-2874.	3.4	37
48	Reversible monoâ€ADPâ€ribosylation of DNA breaks. FEBS Journal, 2017, 284, 4002-4016.	4.7	121
49	Studying Catabolism of Protein ADP-Ribosylation. Methods in Molecular Biology, 2017, 1608, 415-430.	0.9	4
50	PARP, transcription and chromatin modeling. Seminars in Cell and Developmental Biology, 2017, 63, 102-113.	5.0	55
51	Serine ADP-ribosylation reversal by the hydrolase ARH3. ELife, 2017, 6, .	6.0	163
52	The Toxin-Antitoxin System DarTG Catalyzes Reversible ADP-Ribosylation of DNA. Molecular Cell, 2016, 64, 1109-1116.	9.7	137
53	The Conserved Coronavirus Macrodomain Promotes Virulence and Suppresses the Innate Immune Response during Severe Acute Respiratory Syndrome Coronavirus Infection. MBio, 2016, 7, .	4.1	198
54	Identifying Family-Member-Specific Targets of Mono-ARTDs by Using a Chemical Genetics Approach. Cell Reports, 2016, 14, 621-631.	6.4	75

#	Article	IF	CITATIONS
55	MRNIP/C5orf45 Interacts with the MRN Complex and Contributes to the DNA Damage Response. Cell Reports, 2016, 16, 2565-2575.	6.4	18
56	Serine is a new target residue for endogenous ADP-ribosylation on histones. Nature Chemical Biology, 2016, 12, 998-1000.	8.0	189
57	The role of ADP-ribosylation in regulating DNA interstrand crosslink repair. Journal of Cell Science, 2016, 129, 3845-3858.	2.0	15
58	Disruption of Macrodomain Protein SCO6735 Increases Antibiotic Production in Streptomyces coelicolor. Journal of Biological Chemistry, 2016, 291, 23175-23187.	3.4	16
59	Viral Macro Domains Reverse Protein ADP-Ribosylation. Journal of Virology, 2016, 90, 8478-8486.	3.4	140
60	<scp>ENPP</scp> 1 processes protein <scp>ADP</scp> â€ribosylation <i>in vitro</i> . FEBS Journal, 2016, 283, 3371-3388.	4.7	63
61	HPF1/C4orf27 Is a PARP-1-Interacting Protein that Regulates PARP-1 ADP-Ribosylation Activity. Molecular Cell, 2016, 62, 432-442.	9.7	215
62	Macrodomains: Structure, Function, Evolution, and Catalytic Activities. Annual Review of Biochemistry, 2016, 85, 431-454.	11.1	177
63	Processing of protein ADP-ribosylation by Nudix hydrolases. Biochemical Journal, 2015, 468, 293-301.	3.7	113
64	Synthesis of Dimeric ADP-Ribose and Its Structure with Human Poly(ADP-ribose) Glycohydrolase. Journal of the American Chemical Society, 2015, 137, 3558-3564.	13.7	75
65	Structures and Mechanisms of Enzymes Employed in the Synthesis and Degradation of PARP-Dependent Protein ADP-Ribosylation. Molecular Cell, 2015, 58, 935-946.	9.7	205
66	Identification of a Class of Protein ADP-Ribosylating Sirtuins in Microbial Pathogens. Molecular Cell, 2015, 59, 309-320.	9.7	79
67	Poly(ADP-ribosyl)ation in regulation of chromatin structure and the DNA damage response. Chromosoma, 2014, 123, 79-90.	2.2	79
68	Family-wide analysis of poly(ADP-ribose) polymerase activity. Nature Communications, 2014, 5, 4426.	12.8	386
69	Distribution of protein poly(ADP-ribosyl)ation systems across all domains of life. DNA Repair, 2014, 23, 4-16.	2.8	143
70	Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease. EMBO Journal, 2013, 32, 1225-1237.	7.8	263
71	The recognition and removal of cellular poly(<scp>ADP</scp> â€ribose) signals. FEBS Journal, 2013, 280, 3491-3507.	4.7	102
72	Visualization of poly(ADP-ribose) bound to PARG reveals inherent balance between exo- and endo-glycohydrolase activities. Nature Communications, 2013, 4, 2164.	12.8	116

#	Article	IF	CITATIONS
73	Molecular Insights into Poly(ADP-ribose) Recognition and Processing. Biomolecules, 2013, 3, 1-17.	4.0	36
74	Reanalysis of phosphoproteomics data uncovers ADP-ribosylation sites. Nature Methods, 2012, 9, 771-772.	19.0	79
75	Structure and mechanism of a canonical poly(ADP-ribose) glycohydrolase. Nature Communications, 2012, 3, 878.	12.8	74
76	DNA Repair Factor APLF Is a Histone Chaperone. Molecular Cell, 2011, 41, 46-55.	9.7	138
77	Structure of an aprataxin–DNA complex with insights into AOA1 neurodegenerative disease. Nature Structural and Molecular Biology, 2011, 18, 1189-1195.	8.2	36
78	The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase. Nature, 2011, 477, 616-620.	27.8	295
79	Identification of Macrodomain Proteins as Novel O-Acetyl-ADP-ribose Deacetylases. Journal of Biological Chemistry, 2011, 286, 13261-13271.	3.4	146
80	Orphan Macrodomain Protein (Human C6orf130) Is an O-Acyl-ADP-ribose Deacylase. Journal of Biological Chemistry, 2011, 286, 35955-35965.	3.4	65
81	Solution structures of the two PBZ domains from human APLF and their interaction with poly(ADP-ribose). Nature Structural and Molecular Biology, 2010, 17, 241-243.	8.2	89
82	Poly(ADP-ribose)–Dependent Regulation of DNA Repair by the Chromatin Remodeling Enzyme ALC1. Science, 2009, 325, 1240-1243.	12.6	504
83	Poly(ADP-ribose)-binding zinc finger motifs in DNA repair/checkpoint proteins. Nature, 2008, 451, 81-85.	27.8	367
84	Molecular Mechanism of DNA Deadenylation by the Neurological Disease Protein Aprataxin. Journal of Biological Chemistry, 2008, 283, 33994-34001.	3.4	33
85	Actions of Aprataxin in Multiple DNA Repair Pathways. Journal of Biological Chemistry, 2007, 282, 9469-9474.	3.4	78
86	Defective DNA Repair and Neurodegenerative Disease. Cell, 2007, 130, 991-1004.	28.9	295
87	The neurodegenerative disease protein aprataxin resolves abortive DNA ligation intermediates. Nature, 2006, 443, 713-716.	27.8	348
88	recAgene expression in a streptomycete is mediated by the unusual C-terminus of RecA protein. FEMS Microbiology Letters, 2005, 248, 119-124.	1.8	2
89	A freestanding proofreading domain is required for protein synthesis quality control in Archaea. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10260-10265.	7.1	102
90	ldentification of a promoter motif regulating the major DNA damage response mechanism of Mycobacterium tuberculosis. FEMS Microbiology Letters, 2004, 238, 57-63.	1.8	40

#	Article	IF	CITATIONS
91	Identification of a promoter motif regulating the major DNA damage response mechanism of. FEMS Microbiology Letters, 2004, 238, 57-63.	1.8	42
92	Coevolution of an aminoacyl-tRNA synthetase with its tRNA substrates. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13863-13868.	7.1	81
93	The genome of Nanoarchaeum equitans: Insights into early archaeal evolution and derived parasitism. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12984-12988.	7.1	488
94	Trans-editing of mischarged tRNAs. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15422-15427.	7.1	167
95	Methanocaldococcus jannaschii Prolyl-tRNA Synthetase Charges tRNAPro with Cysteine. Journal of Biological Chemistry, 2002, 277, 34749-34754.	3.4	20
96	Cysteine Activation Is an Inherent in Vitro Property of Prolyl-tRNA Synthetases. Journal of Biological Chemistry, 2002, 277, 34743-34748.	3.4	61
97	Cysteinyl-tRNA formation and prolyl-tRNA synthetase. FEBS Letters, 2002, 514, 34-36.	2.8	8
98	Aminoacyl-tRNA formation in the extreme thermophile Thermus thermophilus. Extremophiles, 2002, 6, 167-174.	2.3	4
99	Transcriptional analysis of therecAgene inStreptomyces rimosus: identification of the new type of promoter. FEMS Microbiology Letters, 2002, 209, 133-137.	1.8	14