Qian-Hua Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6915384/publications.pdf

Version: 2024-02-01

		430874	477307
30	3,270	18	29
papers	citations	h-index	g-index
30	30	30	3884
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Draft genome of the wheat A-genome progenitor Triticum urartu. Nature, 2013, 496, 87-90.	27.8	700
2	Nuclear Activity of MLA Immune Receptors Links Isolate-Specific and Basal Disease-Resistance Responses. Science, 2007, 315, 1098-1103.	12.6	659
3	Coiled-Coil Domain-Dependent Homodimerization of Intracellular Barley Immune Receptors Defines a Minimal Functional Module for Triggering Cell Death. Cell Host and Microbe, 2011, 9, 187-199.	11.0	269
4	RAR1 Positively Controls Steady State Levels of Barley MLA Resistance Proteins and Enables Sufficient MLA6 Accumulation for Effective Resistance. Plant Cell, 2004, 16, 3480-3495.	6.6	252
5	Recognition Specificity and RAR1/SGT1 Dependence in Barley Mla Disease Resistance Genes to the Powdery Mildew Fungus. Plant Cell, 2003, 15, 732-744.	6.6	225
6	Structure-Function Analysis of Barley NLR Immune Receptor MLA10 Reveals Its Cell Compartment Specific Activity in Cell Death and Disease Resistance. PLoS Pathogens, 2012, 8, e1002752.	4.7	219
7	Barley MLA Immune Receptors Directly Interfere with Antagonistically Acting Transcription Factors to Initiate Disease Resistance Signaling Â. Plant Cell, 2013, 25, 1158-1173.	6.6	136
8	The miR9863 Family Regulates Distinct Mla Alleles in Barley to Attenuate NLR Receptor-Triggered Disease Resistance and Cell-Death Signaling. PLoS Genetics, 2014, 10, e1004755.	3.5	121
9	Molecular analysis of common wheat genes encoding three types of cytosolic heat shock protein 90 (Hsp90): functional involvement of cytosolic Hsp90s in the control of wheat seedling growth and disease resistance. New Phytologist, 2011, 191, 418-431.	7.3	108
10	The Intracellular Immune Receptor Sw-5b Confers Broad-Spectrum Resistance to Tospoviruses through Recognition of a Conserved 21-Amino Acid Viral Effector Epitope. Plant Cell, 2017, 29, 2214-2232.	6.6	77
11	Rumble in the nuclear jungle: compartmentalization, trafficking, and nuclear action of plant immune receptors. EMBO Journal, 2007, 26, 4293-4301.	7.8	69
12	Secretion of Phospholipase DδFunctions as a Regulatory Mechanism in Plant Innate Immunity. Plant Cell, 2019, 31, 3015-3032.	6.6	55
13	E3 ubiquitin ligase gene <i> <scp>CMPG < /scp>1–V < /i> from <i> Haynaldia villosa < /i> L. contributes to powdery mildew resistance in common wheat (<i> Triticum aestivum < /i> L.). Plant Journal, 2015, 84, 154-168.</i></i></scp></i>	5.7	52
14	Proline Isomerization of the Immune Receptor-Interacting Protein RIN4 by a Cyclophilin Inhibits Effector-Triggered Immunity in Arabidopsis. Cell Host and Microbe, 2014, 16, 473-483.	11.0	48
15	Type I J-Domain NbMIP1 Proteins Are Required for Both Tobacco Mosaic Virus Infection and Plant Innate Immunity. PLoS Pathogens, 2013, 9, e1003659.	4.7	46
16	SnRK1 Phosphorylates and Destabilizes WRKY3 to Enhance Barley Immunity to Powdery Mildew. Plant Communications, 2020, 1, 100083.	7.7	34
17	The <i>TuMYB46L</i> â€xi>TuACO3 module regulates ethylene biosynthesis in einkorn wheat defense to powdery mildew. New Phytologist, 2020, 225, 2526-2541.	7.3	33
18	An E3 Ligase Affects the NLR Receptor Stability and Immunity to Powdery Mildew. Plant Physiology, 2016, 172, 2504-2515.	4.8	30

#	Article	IF	CITATIONS
19	Molecular analysis of phosphomannomutase (PMM) genes reveals a unique PMM duplication event in diverse Triticeae species and the main PMM isozymes in bread wheat tissues. BMC Plant Biology, 2010, 10, 214.	3.6	18
20	The genetics of non-host disease resistance in wheat to barley yellow rust. Theoretical and Applied Genetics, 2004, 109, 425-432.	3.6	17
21	Powdery mildew disease resistance and marker-assisted screening at the Pm60 locus in wild diploid wheat Triticum urartu. Crop Journal, 2020, 8, 252-259.	5.2	16
22	The Powdery Mildew Effector CSEP0027 Interacts With Barley Catalase to Regulate Host Immunity. Frontiers in Plant Science, 2021, 12, 733237.	3.6	16
23	<i>Phytophthora</i> effector PSR1 hijacks the host pre-mRNA splicing machinery to modulate small RNA biogenesis and plant immunity. Plant Cell, 2022, 34, 3443-3459.	6.6	16
24	Sugar transporter <scp>TaSTP3</scp> activation by <scp>TaWRKY19</scp> /61/82 enhances stripe rust susceptibility in wheat. New Phytologist, 2022, 236, 266-282.	7.3	14
25	Partitioning, repressing and derepressing: dynamic regulations in MLA immune receptor triggered defense signaling. Frontiers in Plant Science, 2013, 4, 396.	3.6	10
26	A distinct class of plant and animal viral proteins that disrupt mitosis by directly interrupting the mitotic entry switch Wee1-Cdc25-Cdk1. Science Advances, 2020, 6, eaba3418.	10.3	10
27	Introgression of the Powdery Mildew Resistance Genes Pm60 and Pm60b from Triticum urartu to Common Wheat Using Durum as a â€~Bridge'. Pathogens, 2022, 11, 25.	2.8	10
28	The barley powdery mildew effectors CSEP0139 and CSEP0182 suppress cell death and promote B. graminis fungal virulence in plants. Phytopathology Research, 2021, 3, .	2.4	8
29	HvWRKY2 acts as an immunity suppressor and targets HvCEBiP to regulate powdery mildew resistance in barley. Crop Journal, 2023, 11, 99-107.	5.2	2
30	Modified Single-Cell Transient Gene Expression Assay in Barley Epidermal Cells. Bio-protocol, 2013, 3, .	0.4	0