Hai-Jun Jin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6914876/publications.pdf

Version: 2024-02-01

	236925	206112
2,368	25	48
citations	h-index	g-index
5 0	5 0	1.000
53	53	1680
docs citations	times ranked	citing authors
	2,368 citations 53 docs citations	2,368 25 citations h-index 53 53

#	Article	IF	CITATIONS
1	Synthesis and mechanical properties of porous metals with inverted dealloying structure. Scripta Materialia, 2022, 210, 114483.	5 . 2	6
2	Mechanical properties of unidirectional nanoporous gold under compression. Acta Materialia, 2022, 235, 118078.	7.9	5
3	A critical relative density and a break-and-reconnect model for annealing-induced densification in nanoporous gold. Acta Materialia, 2021, 209, 116806.	7.9	16
4	Surface Triple Junctions Govern the Strength of a Nanoscale Solid. Physical Review Letters, 2021, 126, 235501.	7.8	16
5	Light, strong, and stable nanoporous aluminum with native oxide shell. Science Advances, 2021, 7, .	10.3	21
6	Passivation of Cu-Rh Alloys. Journal of the Electrochemical Society, 2021, 168, 071505.	2.9	1
7	Transition from Homogeneous to Localized Deformation in Nanoporous Gold. Physical Review Letters, 2021, 127, 095501.	7.8	16
8	Functionalized nanoporous gold membrane for pancreatic islet cells encapsulation. Materials Letters, 2021, 301, 130224.	2.6	3
9	High-strength hierarchical-structured bulk nanoporous Cu prepared by dealloying and spark plasma sintering. Scripta Materialia, 2021, 203, 114114.	5.2	7
10	Galvanic Replacement Reaction as a Route to Prepare Nanoporous Aluminum for UV Plasmonics. Nanomaterials, 2020, 10, 102.	4.1	20
11	A universal scaling relationship between the strength and Young's modulus of dealloyed porous Fe0.80Cr0.20. Acta Materialia, 2020, 186, 105-115.	7.9	28
12	Three-Dimensional Atomic Structure of Grain Boundaries Resolved by Atomic-Resolution Electron Tomography. Matter, 2020, 3, 1999-2011.	10.0	34
13	From liquid metal dealloying to liquid metal expulsion. Journal of Materials Science, 2020, 55, 8337-8345.	3.7	10
14	Metallic Nanoporous Aluminum–Magnesium Alloy for UV-Enhanced Spectroscopy. Journal of Physical Chemistry C, 2019, 123, 20287-20296.	3.1	27
15	Surface-driven actuation: Sign reversal under load and surface load-memory effect. Physical Review Materials, 2019, 3, .	2.4	12
16	Evolution of a bicontinuous structure in peritectic melting: The simplest form of dealloying. Physical Review Materials, 2019, 3, .	2.4	7
17	Mechanical response of nanoporous metals: A story of size, surface stress, and severed struts. MRS Bulletin, 2018, 43, 35-42.	3.5	81
18	Size-Dependent Grain-Boundary Structure with Improved Conductive and Mechanical Stabilities in Sub-10-nm Gold Crystals. Physical Review Letters, 2018, 120, 186102.	7.8	29

#	Article	IF	Citations
19	Extrinsic Parting Limit for Dealloying of Cu-Rh. Journal of the Electrochemical Society, 2018, 165, C999-C1006.	2.9	11
20	Monolayer oxide enhanced flow stress in nanoporous gold: the size dependence. Materials Research Letters, 2018, 6, 508-514.	8.7	9
21	Nanoporous Aluminum by Galvanic Replacement: Dealloying and Inward-Growth Plating. Journal of the Electrochemical Society, 2018, 165, C492-C496.	2.9	33
22	Scaling equation for the elastic modulus of nanoporous gold with "fixed―network connectivity. Applied Physics Letters, 2017, 110, .	3.3	52
23	Sealing-free fast-response paraffin/nanoporous gold hybrid actuator. Nanotechnology, 2017, 28, 385501.	2.6	5
24	Anomalous low strain induced by surface charge in nanoporous gold with low relative density. Physical Chemistry Chemical Physics, 2017, 19, 19217-19224.	2.8	10
25	Interpreting anomalous low-strength and low-stiffness of nanoporous gold: Quantification of network connectivity. Acta Materialia, 2016, 118, 77-87.	7.9	104
26	Responsive nanoporous metals: recoverable modulations on strength and shape by watering. Nanotechnology, 2016, 27, 325501.	2.6	11
27	Corrosionâ€Induced Strengthening: Development of Highâ€Strength Nanoporous Metals. Advanced Engineering Materials, 2016, 18, 1050-1058.	3.5	22
28	Defects evolution in nanoporous Au(Pt) during dealloying. Scripta Materialia, 2016, 113, 68-70.	5.2	21
29	Porous Gold with a Nestedâ€Network Architecture and Ultrafine Structure. Advanced Functional Materials, 2015, 25, 2530-2536.	14.9	65
30	Primary and Secondary Dealloying of Au(Pt)-Ag: Structural and Compositional Evolutions, and Volume Shrinkage. Journal of the Electrochemical Society, 2014, 161, C517-C526.	2.9	71
31	Crack Mitigation during Dealloying of Au ₂₅ <scp>C</scp> u ₇₅ . Advanced Engineering Materials, 2014, 16, 389-398.	3.5	37
32	Multilayer-structured gold/nanoporous gold composite for high performance linear actuation. Applied Physics Letters, 2014, 104, .	3.3	14
33	Electrical stiffness modulationâ€"confirming the impact of surface excess elasticity on the mechanics of nanomaterials. Acta Materialia, 2014, 76, 272-280.	7.9	54
34	Electrochemical control of creep in nanoporous gold. Applied Physics Letters, 2013, 103, .	3.3	22
35	Catalytic activity of nanostructured Au: Scale effects versus bimetallic/bifunctional effects in low-temperature CO oxidation on nanoporous Au. Beilstein Journal of Nanotechnology, 2013, 4, 111-128.	2.8	43
36	Electrically Tunable Nanoporous Carbon Hybrid Actuators. Advanced Functional Materials, 2012, 22, 3029-3034.	14.9	39

#	Article	IF	Citations
37	Dynamic studies of CO oxidation on nanoporous Au using a TAP reactor. Journal of Catalysis, 2011, 278, 219-227.	6.2	36
38	A Material with Electrically Tunable Strength and Flow Stress. Science, 2011, 332, 1179-1182.	12.6	165
39	Bulk Nanoporous Metal for Actuation. Advanced Engineering Materials, 2010, 12, 714-723.	3.5	112
40	Adsorption-driven tuning of the electrical resistance of nanoporous gold. Journal of Applied Physics, 2010, 108, .	2.5	34
41	Different measures for the capillarity-driven deformation of a nanoporous metal. Europhysics Letters, 2010, 89, 66001.	2.0	31
42	Nanoporous Auâ^'Pt Alloys As Large Strain Electrochemical Actuators. Nano Letters, 2010, 10, 187-194.	9.1	286
43	Deforming nanoporous metal: Role of lattice coherency. Acta Materialia, 2009, 57, 2665-2672.	7.9	198
44	Nanoporous Metals by Alloy Corrosion: Formation and Mechanical Properties. MRS Bulletin, 2009, 34, 577-586.	3.5	264
45	Sign-inverted surface stress-charge response in nanoporous gold. Surface Science, 2008, 602, 3588-3594.	1.9	109
46	Macroscopically Strong Nanoporous Pt Prepared by Dealloying. Advanced Engineering Materials, 2007, 9, 849-854.	3.5	58
47	An indirect approach to measure glass transition temperature in metallic glasses. International Journal of Materials Research, 2006, 97, 388-394.	0.3	0
48	Shear stress induced reduction of glass transition temperature in a bulk metallic glass. Acta Materialia, 2005, 53, 3013-3020.	7.9	22
49	Pressure effect on the structural relaxation and glass transition in metallic glasses. Acta Materialia, 2003, 51, 6219-6231.	7.9	41
50	Pressure effect on glass transition in a Zr65Al7.5Cu27.5 metallic glass. Applied Physics Letters, 2003, 83, 3284-3286.	3.3	11
51	Compression stress induced flow temperature reduction in a bulk Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 metallic glass. Scripta Materialia, 2002, 47, 787-791.	5. 2	6
52	Effect of plastic deformation on thermal stability in metallic glasses. Scripta Materialia, 2001, 44, 1083-1087.	5.2	22
53	Pressure-enhanced thermal stability against eutectic crystallization in Al-based metallic glasses. Scripta Materialia, 2001, 45, 1091-1097.	5.2	11