Alexander A Aksenov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6914852/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Best practices for analysing microbiomes. Nature Reviews Microbiology, 2018, 16, 410-422.	28.6	1,138
2	SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nature Methods, 2019, 16, 299-302.	19.0	822
3	Feature-based molecular networking in the GNPS analysis environment. Nature Methods, 2020, 17, 905-908.	19.0	650
4	American Gut: an Open Platform for Citizen Science Microbiome Research. MSystems, 2018, 3, .	3.8	604
5	Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity. Nature, 2017, 551, 340-345.	27.8	396
6	Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nature Protocols, 2020, 15, 1954-1991.	12.0	344
7	Global chemical effects of the microbiome include new bile-acid conjugations. Nature, 2020, 579, 123-129.	27.8	316
8	Learning representations of microbe–metabolite interactions. Nature Methods, 2019, 16, 1306-1314.	19.0	184
9	Mass spectrometry searches using MASST. Nature Biotechnology, 2020, 38, 23-26.	17.5	160
10	Global chemical analysis of biology by mass spectrometry. Nature Reviews Chemistry, 2017, 1, .	30.2	146
11	lon identity molecular networking for mass spectrometry-based metabolomics in the GNPS environment. Nature Communications, 2021, 12, 3832.	12.8	119
12	3D molecular cartography using LC–MS facilitated by Optimus and 'ili software. Nature Protocols, 2018, 13, 134-154.	12.0	85
13	A <i>Cutibacterium acnes</i> antibiotic modulates human skin microbiota composition in hair follicles. Science Translational Medicine, 2020, 12, .	12.4	83
14	Consumption of Fermented Foods Is Associated with Systematic Differences in the Gut Microbiome and Metabolome. MSystems, 2020, 5, .	3.8	81
15	A community resource for paired genomic and metabolomic data mining. Nature Chemical Biology, 2021, 17, 363-368.	8.0	81
16	ReDU: a framework to find and reanalyze public mass spectrometry data. Nature Methods, 2020, 17, 901-904.	19.0	79
17	Auto-deconvolution and molecular networking of gas chromatography–mass spectrometry data. Nature Biotechnology, 2021, 39, 169-173	17.5	78
18	Coupling Targeted and Untargeted Mass Spectrometry for Metabolome-Microbiome-Wide Association Studies of Human Fecal Samples. Analytical Chemistry, 2017, 89, 7549-7559.	6.5	62

Alexander A Aksenov

#	Article	IF	CITATIONS
19	Neutrophilic proteolysis in the cystic fibrosis lung correlates with a pathogenic microbiome. Microbiome, 2019, 7, 23.	11.1	53
20	Untargeted mass spectrometry-based metabolomics approach unveils molecular changes in raw and processed foods and beverages. Food Chemistry, 2020, 302, 125290.	8.2	52
21	Predicting proteome allocation, overflow metabolism, and metal requirements in a model acetogen. PLoS Computational Biology, 2019, 15, e1006848.	3.2	46
22	CYP51 is an essential drug target for the treatment of primary amoebic meningoencephalitis (PAM). PLoS Neglected Tropical Diseases, 2017, 11, e0006104.	3.0	45
23	Niche partitioning of a pathogenic microbiome driven by chemical gradients. Science Advances, 2018, 4, eaau1908.	10.3	40
24	A Genomic Toolkit for the Mechanistic Dissection of Intractable Human Gut Bacteria. Cell Host and Microbe, 2020, 27, 1001-1013.e9.	11.0	39
25	Molecular and Microbial Microenvironments in Chronically Diseased Lungs Associated with Cystic Fibrosis. MSystems, 2019, 4, .	3.8	23
26	Mammalian gut metabolomes mirror microbiome composition and host phylogeny. ISME Journal, 2022, 16, 1262-1274.	9.8	12
27	Microbial and Nonvolatile Chemical Diversities of Chinese Dark Teas Are Differed by Latitude and Pile Fermentation. Journal of Agricultural and Food Chemistry, 2022, 70, 5701-5714.	5.2	11
28	Reply to: Examining microbe–metabolite correlations by linear methods. Nature Methods, 2021, 18, 40-41.	19.0	6
29	B. infantis EVC001 Is Well-Tolerated and Improves Human Milk Oligosaccharide Utilization in Preterm Infants in the Neonatal Intensive Care Unit. Frontiers in Pediatrics, 2021, 9, 795970.	1.9	5
30	The molecular impact of life in an indoor environment. Science Advances, 2022, 8, .	10.3	3
31	Data generation and analysis with SIRIUS 4 on two biological case studies. Protocol Exchange, 0, , .	0.3	1