
Ningqiang Gong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6914662/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Amniotic fluid stabilized lipid nanoparticles for in utero intra-amniotic mRNA delivery. Journal of Controlled Release, 2022, 341, 616-633.	9.9	29
2	Physical & Chemical Microwave Ablation (MWA) Enabled by Nonionic MWA Nanosensitizers Repress Incomplete MWA-Arised Liver Tumor Recurrence. ACS Nano, 2022, 16, 5704-5718.	14.6	27
3	Lipid nanodiscs give cancer a STING. Nature Materials, 2022, 21, 616-617.	27.5	2
4	Rational Design of Bisphosphonate Lipid-like Materials for mRNA Delivery to the Bone Microenvironment. Journal of the American Chemical Society, 2022, 144, 9926-9937.	13.7	46
5	Redâ€Lightâ€Responsive Metallopolymer Nanocarriers with Conjugated and Encapsulated Drugs for Phototherapy Against Multidrugâ€Resistant Tumors. Small, 2022, 18, .	10.0	9
6	A paper-based assay for the colorimetric detection of SARS-CoV-2 variants at single-nucleotide resolution. Nature Biomedical Engineering, 2022, 6, 957-967.	22.5	83
7	Helper lipid structure influences protein adsorption and delivery of lipid nanoparticles to spleen and liver. Biomaterials Science, 2021, 9, 1449-1463.	5.4	84
8	Recent progress in mitochondria-targeting-based nanotechnology for cancer treatment. Nanoscale, 2021, 13, 7108-7118.	5.6	49
9	Nanomaterials for T-cell cancer immunotherapy. Nature Nanotechnology, 2021, 16, 25-36.	31.5	191
10	Mannose-Derived Carbon Dots Amplify Microwave Ablation-Induced Antitumor Immune Responses by Capturing and Transferring "Danger Signals―to Dendritic Cells. ACS Nano, 2021, 15, 2920-2932.	14.6	52
11	An amphiphilic dendrimer as a light-activable immunological adjuvant for in situ cancer vaccination. Nature Communications, 2021, 12, 4964.	12.8	44
12	Magnetothermal regulation of in vivo protein corona formation on magnetic nanoparticles for improved cancer nanotherapy. Biomaterials, 2021, 276, 121021.	11.4	29
13	Atomic-Level Nanorings (A-NRs) Therapeutic Agent for Photoacoustic Imaging and Photothermal/Photodynamic Therapy of Cancer. Journal of the American Chemical Society, 2020, 142, 1735-1739.	13.7	121
14	Proton-driven transformable nanovaccine for cancer immunotherapy. Nature Nanotechnology, 2020, 15, 1053-1064.	31.5	194
15	Dually Enzyme- and Acid-Triggered Self-Immolative Ketal Glycoside Nanoparticles for Effective Cancer Prodrug Monotherapy. Nano Letters, 2020, 20, 5465-5472.	9.1	37
16	Ferrimagnetic Vortex Nanoring-Mediated Mild Magnetic Hyperthermia Imparts Potent Immunological Effect for Treating Cancer Metastasis. ACS Nano, 2019, 13, 8811-8825.	14.6	165
17	Natural and engineered bacterial outer membrane vesicles. Biophysics Reports, 2019, 5, 184-198.	0.8	51
18	Gold-DNA nanosunflowers for efficient gene silencing with controllable transformation. Science Advances, 2019, 5, eaaw6264.	10.3	94

NINGQIANG GONG

#	Article	IF	CITATIONS
19	Carbon-dot-supported atomically dispersed gold as a mitochondrial oxidative stress amplifier for cancer treatment. Nature Nanotechnology, 2019, 14, 379-387.	31.5	448
20	Functional Nanomaterials Optimized to Circumvent Tumor Immunological Tolerance. Advanced Functional Materials, 2019, 29, 1806087.	14.9	21
21	Antisense Oligonucleotide-Conjugated Nanostructure-Targeting IncRNA MALAT1 Inhibits Cancer Metastasis. ACS Applied Materials & Interfaces, 2019, 11, 37-42.	8.0	106
22	Multiwalled Carbon Nanotubes Induced Hypotension by Regulating the Central Nervous System. Advanced Functional Materials, 2018, 28, 1705479.	14.9	19
23	Fluorinated Oligoethylenimine Nanoassemblies for Efficient siRNA-Mediated Gene Silencing in Serum-Containing Media by Effective Endosomal Escape. Nano Letters, 2018, 18, 6301-6311.	9.1	61
24	Redâ€Lightâ€Controlled Release of Drug–Ru Complex Conjugates from Metallopolymer Micelles for Phototherapy in Hypoxic Tumor Environments. Advanced Functional Materials, 2018, 28, 1804227.	14.9	82
25	Virus-Inspired Self-Assembled Nanofibers with Aggregation-Induced Emission for Highly Efficient and Visible Gene Delivery. ACS Applied Materials & Interfaces, 2017, 9, 4425-4432.	8.0	41
26	Liposomes loading sodium chloride as effective thermo-seeds for microwave ablation of hepatocellular carcinoma. Nanoscale, 2017, 9, 11068-11076.	5.6	20
27	Carrier-free, self-assembled pure drug nanorods composed of 10-hydroxycamptothecin and chlorin e6 for combinatorial chemo-photodynamic antitumor therapy in vivo. Nanoscale, 2017, 9, 14347-14356.	5.6	103
28	Ultrasmall Gold Nanoparticles Behavior in Vivo Modulated by Surface Polyethylene Glycol (PEG) Grafting. Bioconjugate Chemistry, 2017, 28, 239-243.	3.6	26
29	Periodic microstructures of blood capillaries revealed by synchrotron X-ray multi-resolution microscopic analysis. Biomedical Optics Express, 2017, 8, 5825.	2.9	1
30	Future of nanotherapeutics: Targeting the cellular sub-organelles. Biomaterials, 2016, 97, 10-21.	11.4	151
31	Self-assembling nanowires of an amphiphilic camptothecin prodrug derived from homologous derivative conjugation. Chemical Communications, 2016, 52, 14145-14148.	4.1	39
32	Multifunctional Gadolinium-Doped Manganese Carbonate Nanoparticles for Targeted MR/Fluorescence Imaging of Tiny Brain Gliomas. Analytical Chemistry, 2015, 87, 6251-6257.	6.5	34
33	Effects of the physicochemical properties of gold nanostructures on cellular internalization. International Journal of Energy Production and Management, 2015, 2, 273-280.	3.7	42
34	Multi-stable fluorescent silica nanoparticles obtained from in situ doping with aggregation-induced emission molecules. Journal of Materials Chemistry B, 2015, 3, 8775-8781.	5.8	15
35	INTERACTION OF WATER-DISPERSIBLE, LIGAND-FREE NaYF ₄ : Yb / Er UPCONVERSION NANOPARTICLES WITH BOVINE SERUM ALBUMIN. Nano, 2014, 09, 1450038.	1.0	2
36	One-step microwave-assisted polyol synthesis of green luminescent carbon dots as optical nanoprobes. Carbon, 2014, 68, 258-264.	10.3	308

#	Article	IF	CITATIONS
37	Microwave-Assisted Polyol Synthesis of Gadolinium-Doped Green Luminescent Carbon Dots as a Bimodal Nanoprobe. Langmuir, 2014, 30, 10933-10939.	3.5	155