Davide Ruggero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6914537/publications.pdf

Version: 2024-02-01

36 5,370 25 34 papers citations h-index g-index

40 40 40 9914 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Protein synthesis control in cancer: selectivity and therapeutic targeting. EMBO Journal, 2022, 41, e109823.	7.8	24
2	Examining Myc-Dependent Translation Changes in Cellular Homeostasis and Cancer. Methods in Molecular Biology, 2021, 2318, 255-266.	0.9	2
3	The major cap-binding protein eIF4E regulates lipid homeostasis and diet-induced obesity. Nature Metabolism, 2021, 3, 244-257.	11.9	29
4	Revealing molecular pathways for cancer cell fitness through a genetic screen of the cancer translatome. Cell Reports, 2021, 35, 109321.	6.4	8
5	Releasing the brake on protein synthesis in hematopoietic stem cells. Cell Stem Cell, 2021, 28, 1183-1185.	11.1	O
6	A p53-dependent translational program directs tissue-selective phenotypes in a model of ribosomopathies. Developmental Cell, 2021, 56, 2089-2102.e11.	7.0	26
7	ERα is an RNA-binding protein sustaining tumor cell survival and drug resistance. Cell, 2021, 184, 5215-5229.e17.	28.9	76
8	Translational Control in Cancer. Cold Spring Harbor Perspectives in Biology, 2019, 11, a032896.	5.5	191
9	Nuclear TARBP2 Drives Oncogenic Dysregulation of RNA Splicing and Decay. Molecular Cell, 2019, 75, 967-981.e9.	9.7	54
10	ATF4 couples MYC-dependent translational activity to bioenergetic demands during tumour progression. Nature Cell Biology, 2019, 21, 889-899.	10.3	157
11	A Legionella pneumophila Kinase Phosphorylates the Hsp70 Chaperone Family to Inhibit Eukaryotic Protein Synthesis. Cell Host and Microbe, 2019, 25, 454-462.e6.	11.0	54
12	Translation control of the immune checkpoint in cancer and its therapeutic targeting. Nature Medicine, 2019, 25, 301-311.	30.7	184
13	The mTORC1/4E-BP/eIF4E Axis Promotes Antibody Class Switching in B Lymphocytes. Journal of Immunology, 2019, 202, 579-590.	0.8	20
14	A single H/ACA small nucleolar RNA mediates tumor suppression downstream of oncogenic RAS. ELife, 2019, 8, .	6.0	89
15	Revealing nascent proteomics in signaling pathways and cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2353-2358.	7.1	51
16	Oncogenic KRAS Regulates Amino Acid Homeostasis and Asparagine Biosynthesis via ATF4 and Alters Sensitivity to L-Asparaginase. Cancer Cell, 2018, 33, 91-107.e6.	16.8	158
17	Development of a stress response therapy targeting aggressive prostate cancer. Science Translational Medicine, 2018, 10, .	12.4	124
18	A PERK–miR-211 axis suppresses circadian regulators and protein synthesis to promote cancer cell survival. Nature Cell Biology, 2018, 20, 104-115.	10.3	86

#	Article	IF	CITATIONS
19	A wobbly road to drug resistance in melanoma: <scp>tRNA</scp> â€modifying enzymes in translation reprogramming. EMBO Journal, 2018, 37, .	7.8	10
20	A Translation Tuning HuDdle for Neurons. Molecular Cell, 2018, 71, 195-196.	9.7	1
21	Editorial overview: Cell regulation: 1000 Flavors including chocolate and chili peppers. Current Opinion in Cell Biology, 2017, 45, iv-vi.	5 . 4	0
22	The 4E-BP–eIF4E axis promotes rapamycin-sensitive growth and proliferation in lymphocytes. Science Signaling, 2016, 9, ra57.	3.6	56
23	New frontiers in translational control of the cancer genome. Nature Reviews Cancer, 2016, 16, 288-304.	28.4	282
24	Cell typeâ€"specific abundance of 4EBP1 primes prostate cancer sensitivity or resistance to PI3K pathway inhibitors. Science Signaling, 2015, 8, ra116.	3.6	37
25	Targeting the eIF4F Translation Initiation Complex: A Critical Nexus for Cancer Development. Cancer Research, 2015, 75, 250-263.	0.9	291
26	Differential Requirements for eIF4E Dose in Normal Development and Cancer. Cell, 2015, 162, 59-71.	28.9	283
27	YB-1 and MTA1 protein levels and not DNA or mRNA alterations predict for prostate cancer recurrence. Oncotarget, 2015, 6, 7470-7480.	1.8	23
28	Protein and Nucleotide Biosynthesis Are Coupled by a Single Rate-Limiting Enzyme, PRPS2, to Drive Cancer. Cell, 2014, 157, 1088-1103.	28.9	194
29	H/ACA Small RNA Dysfunctions in Disease Reveal Key Roles for Noncoding RNA Modifications in Hematopoietic Stem Cell Differentiation. Cell Reports, 2013, 3, 1493-1502.	6.4	109
30	Translational Control in Cancer Etiology. Cold Spring Harbor Perspectives in Biology, 2013, 5, a012336-a012336.	5.5	294
31	Myc and mTOR converge on a common node in protein synthesis control that confers synthetic lethality in Myc-driven cancers. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11988-11993.	7.1	210
32	Revisiting the Nucleolus: From Marker to Dynamic Integrator of Cancer Signaling. Science Signaling, 2012, 5, pe38.	3.6	101
33	The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature, 2012, 485, 55-61.	27.8	1,114
34	rRNA Pseudouridylation Defects Affect Ribosomal Ligand Binding and Translational Fidelity from Yeast to Human Cells. Molecular Cell, 2011, 44, 660-666.	9.7	256
35	The Role of Myc-Induced Protein Synthesis in Cancer. Cancer Research, 2009, 69, 8839-8843.	0.9	156
36	Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency. Nature, 2008, 456, 971-975.	27.8	385