Dmitri V Zaykin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6914387/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multi-ethnic GWAS and meta-analysis of sleep quality identify MPP6 as a novel gene that functions in sleep center neurons. Sleep, 2021, 44, .	0.6	5
2	Investigating the impact of caregiver transportation needs on Children's response to behavioral and mental health treatment: A longitudinal analysis. Journal of Transport and Health, 2021, 23, 101262.	1.1	4
3	A functional polymorphism in the ATP-Binding Cassette B1 transporter predicts pharmacologic response to combination of nortriptyline and morphine in neuropathic pain patients. Pain, 2020, 161, 619-629.	2.0	13
4	Quantifying posterior effect size distribution of susceptibility loci by common summary statistics. Genetic Epidemiology, 2020, 44, 339-351.	0.6	0
5	DOT: Gene-set analysis by combining decorrelated association statistics. PLoS Computational Biology, 2020, 16, e1007819.	1.5	7
6	DOT: Gene-set analysis by combining decorrelated association statistics. , 2020, 16, e1007819.		0
7	DOT: Gene-set analysis by combining decorrelated association statistics. , 2020, 16, e1007819.		0
8	DOT: Gene-set analysis by combining decorrelated association statistics. , 2020, 16, e1007819.		0
9	DOT: Gene-set analysis by combining decorrelated association statistics. , 2020, 16, e1007819.		Ο
10	DOT: Gene-set analysis by combining decorrelated association statistics. , 2020, 16, e1007819.		0
11	DOT: Gene-set analysis by combining decorrelated association statistics. , 2020, 16, e1007819.		Ο
12	Detecting Weak Signals by Combining Small P-Values in Genetic Association Studies. Frontiers in Genetics, 2019, 10, 1051.	1.1	8
13	Genome-wide association reveals contribution of MRAS to painful temporomandibular disorder in males. Pain, 2019, 160, 579-591.	2.0	37
14	A study in scarlet: MC1R as the main predictor of red hair and exemplar of the flip-flop effect. Human Molecular Genetics, 2019, 28, 2093-2106.	1.4	11
15	The more you test, the more you find: The smallest <i>P</i> â€values become increasingly enriched with real findings as more tests are conducted. Genetic Epidemiology, 2017, 41, 726-743.	0.6	3
16	Previous GWAS hits in relation to young-onset breast cancer. Breast Cancer Research and Treatment, 2017, 161, 333-344.	1.1	11
17	Genome-Wide Association Analysis of the Sense of Smell in U.S. Older Adults: Identification of Novel Risk Loci in African-Americans and European-Americans. Molecular Neurobiology, 2017, 54, 8021-8032.	1.9	17
18	Bayesian prediction intervals for assessing P-value variability in prospective replication studies. Translational Psychiatry, 2017, 7, 1271.	2.4	3

DMITRI V ZAYKIN

#	Article	IF	CITATIONS
19	[P2–109]: CEREBROSPINAL FLUID BIOMARKER SIGNATURE IN ALZHEIMER'S DISEASE GENETIC ASSOCIATION LANDSCAPE BY FUNCTIONAL LINEAR MODELS. Alzheimer's and Dementia, 2017, 13, P648.	0.4	0
20	Epiregulin and EGFR interactions are involved in pain processing. Journal of Clinical Investigation, 2017, 127, 3353-3366.	3.9	85
21	Uncovering Local Trends in Genetic Effects of Multiple Phenotypes via Functional Linear Models. Genetic Epidemiology, 2016, 40, 210-221.	0.6	10
22	A family-based, genome-wide association study of young-onset breast cancer: inherited variants and maternally mediated effects. European Journal of Human Genetics, 2016, 24, 1316-1323.	1.4	11
23	COMT gene locus. Pain, 2015, 156, 2072-2083.	2.0	28
24	Response. Journal of the National Cancer Institute, 2015, 107, djv228.	3.0	1
25	Is Bad Luck the Main Cause of Cancer?. Journal of the National Cancer Institute, 2015, 107, djv125-djv125.	3.0	31
26	The nicotinic α6 subunit gene determines variability in chronic pain sensitivity via cross-inhibition of P2X2/3 receptors. Science Translational Medicine, 2015, 7, 287ra72.	5.8	59
27	Resampling-based multiple comparison procedure with application to point-wise testing with functional data. Environmental and Ecological Statistics, 2015, 22, 45-59.	1.9	9
28	Assessing the Probability that a Finding Is Genuine for Large-Scale Genetic Association Studies. PLoS ONE, 2015, 10, e0124107.	1.1	5
29	Integrative framework for identification of key cell identity genes uncovers determinants of ES cell identity and homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1581-90.	3.3	26
30	Functional Analysis of Variance for Association Studies. PLoS ONE, 2014, 9, e105074.	1.1	24
31	Facial pain with localized and widespread manifestations: Separate pathways of vulnerability. Pain, 2013, 154, 2335-2343.	2.0	31
32	The Ranking Probability Approach and Its Usage in Design and Analysis of Large-Scale Studies. PLoS ONE, 2013, 8, e83079.	1.1	2
33	Genetically determined P2X7 receptor pore formation regulates variability in chronic pain sensitivity. Nature Medicine, 2012, 18, 595-599.	15.2	335
34	Large candidate gene association study reveals genetic risk factors and therapeutic targets for fibromyalgia. Arthritis and Rheumatism, 2012, 64, 584-593.	6.7	78
35	Potential Genetic Risk Factors for Chronic TMD: Genetic Associations from the OPPERA Case Control Study. Journal of Pain, 2011, 12, T92-T101.	0.7	157
36	Optimally weighted Z-test is a powerful method for combining probabilities in meta-analysis. Journal of Evolutionary Biology, 2011, 24, 1836-1841.	0.8	214

DMITRI V ZAYKIN

#	Article	IF	CITATIONS
37	Novel Rank-Based Approaches for Discovery and Replication in Genome-Wide Association Studies. Genetics, 2011, 189, 329-340.	1.2	15
38	Using Imputed Genotypes for Relative Risk Estimation in Case-Parent Studies. American Journal of Epidemiology, 2011, 173, 553-559.	1.6	2
39	DOMINE: a comprehensive collection of known and predicted domain-domain interactions. Nucleic Acids Research, 2011, 39, D730-D735.	6.5	167
40	<i>P</i> â€value based analysis for shared controls design in genomeâ€wide association studies. Genetic Epidemiology, 2010, 34, 725-738.	0.6	37
41	Pain perception is altered by a nucleotide polymorphism in <i>SCN9A</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5148-5153.	3.3	279
42	Multiple chronic pain states are associated with a common amino acid–changing allele in KCNS1. Brain, 2010, 133, 2519-2527.	3.7	224
43	Robust Tests in Genome-Wide Scans under Incomplete Linkage Disequilibrium. Statistical Science, 2009, 24, .	1.6	18
44	Expansion of the human μ-opioid receptor gene architecture: novel functional variants. Human Molecular Genetics, 2009, 18, 1037-1051.	1.4	150
45	Haplotype associations with quantitative traits in the presence of complex multilocus and heterogeneous effects. Genetic Epidemiology, 2009, 33, 63-78.	0.6	15
46	Genetic Flip-Flop without an Accompanying Change in Linkage Disequilibrium. American Journal of Human Genetics, 2008, 82, 794-796.	2.6	53
47	Correlation-Based Inference for Linkage Disequilibrium With Multiple Alleles. Genetics, 2008, 180, 533-545.	1.2	65
48	Use of pairwise marker combination and recursive partitioning in a pharmacogenetic genome-wide scan. Pharmacogenomics Journal, 2007, 7, 180-189.	0.9	12
49	Combining <i>p</i> â€values in largeâ€scale genomics experiments. Pharmaceutical Statistics, 2007, 6, 217-226.	0.7	69
50	A letter to the editor in reply to "susceptibility to guillain–barre syndrome is associated to polymorphisms of CD1 genes―by Caporale et al. in the J of Neuroimmunology (2006) 177:112–118. Journal of Neuroimmunology, 2007, 186, 201-202.	1.1	6
51	Contrasting Linkage-Disequilibrium Patterns between Cases and Controls as a Novel Association-Mapping Method. American Journal of Human Genetics, 2006, 78, 737-746.	2.6	85
52	Ranks of Genuine Associations in Whole-Genome Scans. Genetics, 2005, 171, 813-823.	1.2	81
53	Large recursive partitioning analysis of complex disease pharmacogenetic studies. II. Statistical considerations. Pharmacogenomics, 2005, 6, 77-89.	0.6	16
54	Effect of Two- and Three-Locus Linkage Disequilibrium on the Power to Detect Marker/Phenotype Associations. Genetics, 2004, 168, 1029-1040.	1.2	60

DMITRI V ZAYKIN

#	Article	IF	CITATIONS
55	Interval estimation of genetic susceptibility for retrospective case-control studies. BMC Genetics, 2004, 5, 9.	2.7	7
56	Bounds and normalization of the composite linkage disequilibrium coefficient. Genetic Epidemiology, 2004, 27, 252-257.	0.6	43
57	Selection of Genetic Markers for Association Analyses, Using Linkage Disequilibrium and Haplotypes. American Journal of Human Genetics, 2003, 73, 115-130.	2.6	137
58	Multiple Tests for Genetic Effects in Association Studies. , 2002, 184, 143-168.		58
59	Testing Association of Statistically Inferred Haplotypes with Discrete and Continuous Traits in Samples of Unrelated Individuals. Human Heredity, 2002, 53, 79-91.	0.4	628
60	Truncated product method for combiningP-values. Genetic Epidemiology, 2002, 22, 170-185.	0.6	457
61	Effectiveness of computational methods in haplotype prediction. Human Genetics, 2002, 110, 148-156.	1.8	75
62	GAW12: Simulated Genome Scan, Sequence, and Family Data for a Common Disease. Genetic Epidemiology, 2001, 21, S332-S338.	0.6	26
63	Evolution of the Simulated Data Problem. Genetic Epidemiology, 2001, 21, S325-S331.	0.6	4
64	Identifying Susceptibility Genes Using Linkage and Linkage Disequilibrium Analysis in Large Pedigrees. Genetic Epidemiology, 2001, 21, S453-8.	0.6	1
65	Association mapping: where we've been, where we're going. Expert Review of Molecular Diagnostics, 2001, 1, 334-342.	1.5	6
66	Using the False Discovery Rate Approach in the Genetic Dissection of Complex Traits: A Response to Weller et al Genetics, 2000, 154, 1917-1918.	1.2	41
67	Novel tests for markerâ€disease association using the collaborative study on the genetics of alcoholism data. Genetic Epidemiology, 1999, 17, S265-70.	0.6	2
68	Exact tests for association between alleles at arbitrary numbers of loci. Genetica, 1995, 96, 169-178.	0.5	190
69	Two Programs to Estimate Significance of χ2 Values Using Pseudo-Probability Tests. Journal of Heredity, 1993, 84, 152-152.	1.0	254