Hernan Carol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6914178/publications.pdf

Version: 2024-02-01

73 papers

3,683

35 h-index 59 g-index

74 all docs

74 docs citations

74 times ranked 5138 citing authors

#	Article	IF	CITATIONS
1	Examining treatment responses of diagnostic marrow in murine xenografts to predict relapse in children with acute lymphoblastic leukaemia. British Journal of Cancer, 2020, 123, 742-751.	6.4	1
2	A Phase II Study of Alisertib in Children with Recurrent/Refractory Solid Tumors or Leukemia: Children's Oncology Group Phase I and Pilot Consortium (ADVL0921). Clinical Cancer Research, 2019, 25, 3229-3238.	7.0	61
3	Bioluminescence Imaging Enhances Analysis of Drug Responses in a Patient-Derived Xenograft Model of Pediatric ALL. Clinical Cancer Research, 2017, 23, 3744-3755.	7. O	16
4	Initial testing of VS-4718, a novel inhibitor of focal adhesion kinase (FAK), against pediatric tumor models by the Pediatric Preclinical Testing Program. Pediatric Blood and Cancer, 2017, 64, e26304.	1.5	20
5	Initial testing (stage 1) of the curaxin CBL0137 by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2017, 64, e26263.	1.5	15
6	Initial Testing (Stage 1) of MKâ€8242—A Novel MDM2 Inhibitor—by the Pediatric Preclinical Testing Program. Pediatric Blood and Cancer, 2016, 63, 1744-1752.	1.5	27
7	Venetoclax responses of pediatric ALL xenografts reveal sensitivity of MLL-rearranged leukemia. Blood, 2016, 128, 1382-1395.	1.4	148
8	Pharmacodynamic and genomic markers associated with response to the XPO1/CRM1 inhibitor selinexor (KPTâ€330): A report from the pediatric preclinical testing program. Pediatric Blood and Cancer, 2016, 63, 276-286.	1.5	28
9	TriKEs and BiKEs join CARs on the cancer immunotherapy highway. Human Vaccines and Immunotherapeutics, 2016, 12, 2790-2796.	3.3	47
10	Acute Sensitivity of Ph-like Acute Lymphoblastic Leukemia to the SMAC-Mimetic Birinapant. Cancer Research, 2016, 76, 4579-4591.	0.9	20
11	Initial Testing of NSC 750854, a Novel Purine Analog, Against Pediatric Tumor Models by the Pediatric Preclinical Testing Program. Pediatric Blood and Cancer, 2016, 63, 443-450.	1.5	O
12	AKR1C3 is a biomarker of sensitivity to PR-104 in preclinical models of T-cell acute lymphoblastic leukemia. Blood, 2015, 126, 1193-1202.	1.4	50
13	Initial testing (stage 1) of the PARP inhibitor BMN 673 by the pediatric preclinical testing program: <i>PALB2</i> mutation predicts exceptional <i>in vivo</i> response to BMN 673. Pediatric Blood and Cancer, 2015, 62, 91-98.	1.5	65
14	Initial testing (stage 1) of BAL101553, a novel tubulin binding agent, by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2015, 62, 1106-1109.	1.5	9
15	Evaluation of the <i>In Vitro</i> and <i>In Vivo</i> Efficacy of the JAK Inhibitor AZD1480 against JAK-Mutated Acute Lymphoblastic Leukemia. Molecular Cancer Therapeutics, 2015, 14, 364-374.	4.1	49
16	Synergistic Activity of PARP Inhibition by Talazoparib (BMN 673) with Temozolomide in Pediatric Cancer Models in the Pediatric Preclinical Testing Program. Clinical Cancer Research, 2015, 21, 819-832.	7.0	100
17	Effective Targeting of the P53–MDM2 Axis in Preclinical Models of Infant ⟨i⟩MLL⟨/i⟩-Rearranged Acute Lymphoblastic Leukemia. Clinical Cancer Research, 2015, 21, 1395-1405.	7. O	43
18	Efficacy of CPXâ€351, (cytarabine:daunorubicin) liposome injection, against acute lymphoblastic leukemia (ALL) xenograft models of the Pediatric Preclinical Testing Program. Pediatric Blood and Cancer, 2015, 62, 65-71.	1.5	20

#	Article	IF	CITATIONS
19	Initial testing (stage 1) of the investigational mTOR kinase inhibitor MLN0128 by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2014, 61, 1486-1489.	1.5	19
20	Initial testing (stage 1) of the histone deacetylase inhibitor, quisinostat (JNJ-26481585), by the Pediatric Preclinical Testing Program. Pediatric Blood and Cancer, 2014, 61, 245-252.	1.5	37
21	Cell and Molecular Determinants of <i>In Vivo</i> Efficacy of the BH3 Mimetic ABT-263 against Pediatric Acute Lymphoblastic Leukemia Xenografts. Clinical Cancer Research, 2014, 20, 4520-4531.	7.0	67
22	Initial testing (stage 1) of the notch inhibitor PFâ€03084014, by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2014, 61, 1493-1496.	1.5	6
23	Initial testing (stage 1) of the poloâ€like kinase inhibitor volasertib (BI 6727), by the Pediatric Preclinical Testing Program. Pediatric Blood and Cancer, 2014, 61, 158-164.	1.5	46
24	Initial testing of the MDM2 inhibitor RG7112 by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2013, 60, 633-641.	1.5	55
25	Initial testing (stage 1) of temozolomide by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2013, 60, 783-790.	1.5	13
26	Initial testing (stage 1) of the phosphatidylinositol $3\hat{a}\in^2$ kinase inhibitor, SAR245408 (XL147) by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2013, 60, 791-798.	1.5	19
27	Initial testing (stage 1) of eribulin, a novel tubulin binding agent, by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2013, 60, 1325-1332.	1.5	77
28	The Anti-CD19 Antibody–Drug Conjugate SAR3419 Prevents Hematolymphoid Relapse Postinduction Therapy in Preclinical Models of Pediatric Acute Lymphoblastic Leukemia. Clinical Cancer Research, 2013, 19, 1795-1805.	7.0	66
29	Initial testing (stage 1) of ganetespib, an Hsp90 inhibitor, by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2013, 60, E42-5.	1.5	11
30	Initial testing (stage 1) of the mTOR kinase inhibitor AZD8055 by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2012, 58, 191-199.	1.5	35
31	Testing of the topoisomerase 1 inhibitor Genzâ€644282 by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2012, 58, 200-209.	1.5	16
32	Initial testing (Stage 1) of AT13387, an HSP90 inhibitor, by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2012, 59, 185-188.	1.5	14
33	Initial testing (stage 1) of LCL161, a SMAC mimetic, by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2012, 58, 636-639.	1.5	73
34	Initial testing of the CENPâ€E inhibitor GSK923295A by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2012, 58, 916-923.	1.5	39
35	Initial testing (stage 1) by the pediatric preclinical testing program of RO4929097, a γâ€secretase inhibitor targeting notch signaling. Pediatric Blood and Cancer, 2012, 58, 815-818.	1.5	31
36	Initial testing of JNJâ€26854165 (Serdemetan) by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2012, 59, 329-332.	1.5	22

#	Article	lF	CITATIONS
37	Initial testing of the investigational NEDD8â€activating enzyme inhibitor MLN4924 by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2012, 59, 246-253.	1.5	30
38	Initial testing (stage 1) of SGlâ€1776, a PIM1 kinase inhibitor, by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2012, 59, 749-752.	1.5	20
39	Testing of the Akt/PKB inhibitor MKâ€2206 by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2012, 59, 518-524.	1.5	36
40	Initial testing (stage 1) of the cyclin dependent kinase inhibitor SCH 727965 (dinaciclib) by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2012, 59, 1266-1274.	1.5	38
41	Dual Inhibition of JAK/STAT and MAPK Pathways Results in Synergistic Cell Killing of JAK-Mutated Pediatric Acute Lymphoblastic Leukemia. Blood, 2012, 120, 3562-3562.	1.4	2
42	Pharmacokinetic Modeling of an Induction Regimen for In Vivo Combined Testing of Novel Drugs against Pediatric Acute Lymphoblastic Leukemia Xenografts. PLoS ONE, 2012, 7, e33894.	2.5	49
43	Pronounced Hypoxia in Models of Murine and Human Leukemia: High Efficacy of Hypoxia-Activated Prodrug PR-104. PLoS ONE, 2011, 6, e23108.	2.5	108
44	Efficacy and pharmacokinetic/pharmacodynamic evaluation of the Aurora kinase A inhibitor MLN8237 against preclinical models of pediatric cancer. Cancer Chemotherapy and Pharmacology, 2011, 68, 1291-1304.	2.3	88
45	Initial testing (stage 1) of the IGFâ€1 receptor inhibitor BMSâ€754807 by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2011, 56, 595-603.	1.5	67
46	Initial testing (stage 1) of the polyamine analog PG11047 by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2011, 57, 268-274.	1.5	18
47	Initial testing of lenalidomide by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2011, 57, 606-611.	1.5	4
48	Initial testing of the hypoxiaâ€activated prodrug PRâ€104 by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2011, 57, 443-453.	1.5	31
49	Initial testing (stage 1) of mapatumumab (HGSâ€ETR1) by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2010, 54, 307-310.	1.5	13
50	Initial testing of topotecan by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2010, 54, 707-715.	1.5	37
51	Initial testing of the aurora kinase a inhibitor MLN8237 by the Pediatric Preclinical Testing Program (PPTP). Pediatric Blood and Cancer, 2010, 55, 26-34.	1.5	195
52	Initial testing (stage 1) of AZD6244 (ARRYâ€142886) by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2010, 55, 668-677.	1.5	94
53	Initial testing (stage 1) of the Akt inhibitor GSK690693 by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2010, 55, 1329-1337.	1.5	43
54	Initial testing (stage 1) of the multi-targeted kinase inhibitor sorafenib by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2010, 55, 1126-1133.	1.5	51

#	Article	IF	Citations
55	Stage 2 Combination Testing of Rapamycin with Cytotoxic Agents by the Pediatric Preclinical Testing Program. Molecular Cancer Therapeutics, 2010, 9, 101-112.	4.1	89
56	Targeting the Leukemia-Associated Hypoxic Microenvironment with Hypoxia-Activated Prodrug PR-104. Blood, 2010, 116, 868-868.	1.4	0
57	Initial testing of aplidin by the pediatric preâ€clinical testing program. Pediatric Blood and Cancer, 2009, 53, 509-512.	1.5	10
58	Initial testing (stage 1) of vorinostat (SAHA) by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2009, 53, 505-508.	1.5	54
59	Initial testing (stage 1) of lapatinib by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2009, 53, 594-598.	1.5	28
60	Initial testing (stage 1) of the kinesin spindle protein inhibitor ispinesib by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2009, 53, 1255-1263.	1.5	40
61	Initial testing (stage 1) of the proteasome inhibitor bortezomib by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2008, 50, 37-45.	1.5	112
62	Initial testing (stage 1) of the mTOR inhibitor rapamycin by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2008, 50, 799-805.	1.5	162
63	Initial testing (stage 1) of the BH3 mimetic ABTâ€263 by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2008, 50, 1181-1189.	1.5	108
64	Initial testing (stage 1) of a monoclonal antibody (SCH 717454) against the IGF $\hat{a} \in \mathbb{R}$ receptor by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2008, 50, 1190-1197.	1.5	168
65	Stage 1 testing and pharmacodynamic evaluation of the HSP90 inhibitor alvespimycin (17â€DMAG,) Tj ETQq1 ∑	l 0.784314 1.5	$+$ rg $_{31}^{BT}$ /Overlo
66	Echinococcus granulosus: Induction of T-independent antibody response against protoscolex glycoconjugates in early experimental infection. Experimental Parasitology, 2008, 119, 460-466.	1.2	20
67	The pediatric preclinical testing program: Description of models and early testing results. Pediatric Blood and Cancer, 2007, 49, 928-940.	1.5	430
68	Salmonella typhimurium as a basis for a live oral Echinococcus granulosus vaccine. Vaccine, 2000, 19, 460-469.	3.8	57
69	Fcâ€binding molecules specific for human lgG1 and lgG3 are present in <i>Echinococcus granulosus</i> protoscoleces. Parasite Immunology, 1998, 20, 399-404.	1.5	11
70	A mucosal IgA response, but no systemic antibody response, is evoked by intranasal immunisation of dogs with Echinococcus granulosus surface antigens iscoms. Veterinary Immunology and Immunopathology, 1998, 65, 29-41.	1.2	29
71	Evolution of IgG antibody response against Toxoplasma gondii tissue cyst in acute and chronic human infections. Revista Do Instituto De Medicina Tropical De Sao Paulo, 1998, 40, 77-84.	1.1	2
72	Intranasal immunization of mice with Echinococcus granulosus surface antigens Iscoms evokes a strong immune response, biased towards glucidic epitopes. Parasite Immunology, 1997, 19, 197-205.	1.5	26

#	Article	IF	CITATIONS
73	Lack of interspecies barriers in anti–Id stimulated antibody production against Echinococcus granulosus antigens. Parasite Immunology, 1989, 11, 183-195.	1.5	16