
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6913866/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Simulating the mechanics behind sub-optimal mobility and the associated economic losses in dairy production. Preventive Veterinary Medicine, 2022, 199, 105551.	1.9	7
2	Estimating the nonlinear association of online somatic cell count, lactate dehydrogenase, and electrical conductivity with milk yield. Journal of Dairy Science, 2022, 105, 3518-3529.	3.4	5
3	Smallholder Broiler Farmers' Characteristics to Uptake Measures Against Highly Pathogenic Avian Influenza in Western Java. Frontiers in Veterinary Science, 2022, 9, 727006.	2.2	2
4	Development of resilience indicator traits based on daily step count data for dairy cattle breeding. Genetics Selection Evolution, 2022, 54, 21.	3.0	10
5	Revenues and costs of dairy cows with different voluntary waiting periods based on data of a randomized control trial. Journal of Dairy Science, 2022, 105, 4171-4188.	3.4	8
6	Forecasting chronic mastitis using automatic milking system sensor data and gradient-boosting classifiers. Computers and Electronics in Agriculture, 2022, 198, 107002.	7.7	8
7	Fertility and milk production on commercial dairy farms with customized lactation lengths. Journal of Dairy Science, 2021, 104, 443-458.	3.4	17
8	The effect of bovine viral diarrhea virus introduction on milk production of Dutch dairy herds. Journal of Dairy Science, 2021, 104, 2074-2086.	3.4	5
9	Progression of different udder inflammation indicators and their episode length after onset of inflammation using automatic milking system sensor data. Journal of Dairy Science, 2021, 104, 3458-3473.	3.4	7
10	Reducing Antimicrobial Use and Dependence in Livestock Production Systems: A Social and Economic Sciences Perspective on an Interdisciplinary Approach. Frontiers in Veterinary Science, 2021, 8, 584593.	2.2	12
11	An Empirical Analysis on the Longevity of Dairy Cows in Relation to Economic Herd Performance. Frontiers in Veterinary Science, 2021, 8, 646672.	2.2	16
12	Trends in somatic cell count deteriorations in Dutch dairy herds transitioning to an automatic milking system. Journal of Dairy Science, 2021, 104, 6039-6050.	3.4	3
13	Effects of flow-controlled vacuum on milking performance and teat condition in a rotary milking parlor. Journal of Dairy Science, 2021, 104, 6820-6831.	3.4	8
14	Transmission dynamics of Staphylococcus aureus and Streptococcus agalactiae in a Dutch dairy herd using an automatic milking system. Preventive Veterinary Medicine, 2021, 192, 105384.	1.9	5
15	Effects of extended voluntary waiting period from calving until first insemination on body condition, milk yield, and lactation persistency. Journal of Dairy Science, 2021, 104, 8009-8022.	3.4	14
16	Antibiotic use and potential economic impact of implementing selective dry cow therapy in large US dairies. Journal of Dairy Science, 2021, 104, 8931-8946.	3.4	12
17	The effect of new bovine viral diarrhea virus introduction on somatic cell count, calving interval, culling, and calf mortality of dairy herds in the Dutch bovine viral diarrhea virus–free program. Journal of Dairy Science, 2021, 104, 10217-10231.	3.4	1
18	Invited review: Toward a common language in data-driven mastitis detection research. Journal of Dairy Science, 2021, 104, 10449-10461.	3.4	4

#	Article	IF	CITATIONS
19	Novel ways to use sensor data to improve mastitis management. Journal of Dairy Science, 2021, 104, 11317-11332.	3.4	10
20	Regularly fluctuating somatic cell count pattern in dairy herds. Journal of Dairy Science, 2021, 104, 11126-11134.	3.4	1
21	Improving poultry meat and sales channels to address food safety concerns: consumers' preferences on poultry meat attributes. British Food Journal, 2021, 123, 529-546.	2.9	4
22	Editorial: Proceedings of the 3rd ISESSAH Conference 2019. Frontiers in Veterinary Science, 2021, 8, 807796.	2.2	0
23	Understanding the Motivation of Western Java Smallholder Broiler Farmers to Uptake Measures Against Highly Pathogenic Avian Influenza (HPAI). Frontiers in Veterinary Science, 2020, 7, 362.	2.2	6
24	Policy Perspectives of Dog-Mediated Rabies Control in Resource-Limited Countries: The Ethiopian Situation. Frontiers in Veterinary Science, 2020, 7, 551.	2.2	4
25	Performance of Online Somatic Cell Count Estimation in Automatic Milking Systems. Frontiers in Veterinary Science, 2020, 7, 221.	2.2	13
26	Editorial: Proceedings of the 2nd ISESSAH Conference 2018. Frontiers in Veterinary Science, 2020, 7, 52.	2.2	1
27	Antimicrobial use and farmers' attitude toward mastitis treatment on dairy farms with automatic or conventional milking systems. Journal of Dairy Science, 2020, 103, 7302-7314.	3.4	15
28	The role of farm business type on biosecurity practices in West Java broiler farms. Preventive Veterinary Medicine, 2020, 176, 104910.	1.9	19
29	Estimating the combined costs of clinical and subclinical ketosis in dairy cows. PLoS ONE, 2020, 15, e0230448.	2.5	32
30	Farmers' willingness to pay for foot and mouth disease vaccine in different cattle production systems in Amhara region of Ethiopia. PLoS ONE, 2020, 15, e0239829.	2.5	10
31	Associating mobility scores with production and reproductive performance in pasture-based dairy cows. Journal of Dairy Science, 2020, 103, 9238-9249.	3.4	14
32	A PUSH AND PULL INTERVENTION TO CONTROL AVIAN INFLUENZA: A LESSON LEARNED FROM THE WESTERN JAVA POULTRY SECTOR. Jurnal Manajemen & Agribisnis, 2020, , .	0.1	2
33	Title is missing!. , 2020, 15, e0239829.		Ο
34	Title is missing!. , 2020, 15, e0239829.		0
35	Title is missing!. , 2020, 15, e0239829.		0
36	Title is missing!. , 2020, 15, e0239829.		0

#	Article	IF	CITATIONS
37	Title is missing!. , 2020, 15, e0239829.		Ο
38	Title is missing!. , 2020, 15, e0239829.		0
39	The economic impact of drying off cows with a dry-off facilitator (cabergoline) compared with 2 methods of gradual cessation of lactation for European dairy farms. Journal of Dairy Science, 2019, 102, 7483-7493.	3.4	4
40	Associating cow characteristics with mobility scores in pasture-based dairy cows. Journal of Dairy Science, 2019, 102, 8332-8342.	3.4	21
41	Production Diseases Reduce the Efficiency of Dairy Production: A Review of the Results, Methods, and Approaches Regarding the Economics of Mastitis. Annual Review of Resource Economics, 2019, 11, 289-312.	3.7	63
42	Impact of One-Health framework on vaccination cost-effectiveness: A case study of rabies in Ethiopia. One Health, 2019, 8, 100103.	3.4	7
43	Economic evaluation of 4 bovine leukemia virus control strategies for Alberta dairy farms. Journal of Dairy Science, 2019, 102, 2578-2592.	3.4	24
44	Farm-level risk factors for bovine mastitis in Dutch automatic milking dairy herds. Journal of Dairy Science, 2019, 102, 4522-4535.	3.4	14
45	Economic and epidemiological impact of different intervention strategies for subclinical and clinical mastitis. Preventive Veterinary Medicine, 2019, 166, 78-85.	1.9	36
46	A Systematic Evaluation of Measures Against Highly Pathogenic Avian Influenza (HPAI) in Indonesia. Frontiers in Veterinary Science, 2019, 6, 33.	2.2	7
47	Farm-specific failure costs of production disorders in European organic dairy herds. Preventive Veterinary Medicine, 2019, 168, 19-29.	1.9	20
48	Editorial: Proceedings of the Inaugural ISESSAH Conference. Frontiers in Veterinary Science, 2019, 6, 366.	2.2	0
49	Economic and epidemiological impact of different intervention strategies for clinical contagious mastitis. Journal of Dairy Science, 2019, 102, 1483-1493.	3.4	21
50	An economic assessment of pseudorabies (Aujeszky' disease) elimination on hog farms in China. Preventive Veterinary Medicine, 2019, 163, 24-30.	1.9	17
51	Addition of meloxicam to the treatment of bovine clinical mastitis results in a net economic benefit to the dairy farmer. Journal of Dairy Science, 2018, 101, 3387-3397.	3.4	19
52	Delaying investments in sensor technology: The rationality of dairy farmers' investment decisions illustrated within the framework of real options theory. Journal of Dairy Science, 2018, 101, 7650-7660.	3.4	34
53	Perceived risk and personality traits explaining heterogeneity in Dutch dairy farmers' beliefs about vaccination against Bluetongue. Journal of Risk Research, 2018, 21, 562-578.	2.6	17
54	Farmers' Preferences For Bluetongue Vaccination SchemeÂAttributes: An Integrated Choice and Latent Variable Approach. Journal of Agricultural Economics, 2018, 69, 537-560.	3.5	14

#	Article	IF	CITATIONS
55	Economic optimization of selective dry cow treatment. Journal of Dairy Science, 2018, 101, 1530-1539.	3.4	30
56	Veterinary medicinal product usage among food animal producers and its health implications in Central Ethiopia. BMC Veterinary Research, 2018, 14, 409.	1.9	26
57	Dynamic forecasting of individual cow milk yield in automatic milking systems. Journal of Dairy Science, 2018, 101, 10428-10439.	3.4	16
58	Linking Supply Chain Governance and Biosecurity in the Context of HPAI Control in Western Java: A Value Chain Perspective. Frontiers in Veterinary Science, 2018, 5, 94.	2.2	31
59	Herd-Level Mastitis-Associated Costs on Canadian Dairy Farms. Frontiers in Veterinary Science, 2018, 5, 100.	2.2	122
60	What drives the choice of poultry market channel and the change of purchase behavior due to highly pathogenic avian influenza outbreaks?. Poultry Science, 2018, 97, 3652-3660.	3.4	8
61	Estimating the burden of rabies in Ethiopia by tracing dog bite victims. PLoS ONE, 2018, 13, e0192313.	2.5	24
62	Economic Evaluation of Dairy Cow Stocking Density. Edis, 2018, 2018, .	0.1	0
63	Stochastic bio—economic modeling of mastitis in Ethiopian dairy farms. Preventive Veterinary Medicine, 2017, 138, 94-103.	1.9	20
64	Sensor data on cow activity, rumination, and ear temperature improve prediction of the start of calving in dairy cows. Computers and Electronics in Agriculture, 2017, 132, 108-118.	7.7	60
65	Cost-effectiveness of mass dog rabies vaccination strategies to reduce human health burden in Flores Island, Indonesia. Vaccine, 2017, 35, 6727-6736.	3.8	7
66	Prevalence of subclinical mastitis and associated risk factors at cow and herd level in dairy farms in North-West Ethiopia. Preventive Veterinary Medicine, 2017, 145, 23-31.	1.9	36
67	Attitudes of different stakeholders toward pig husbandry: a study to determine conflicting and matching attitudes toward animals, humans and the environment. Agriculture and Human Values, 2017, 34, 393-405.	3.0	27
68	Attitudes of Dutch Citizens toward Sow Husbandry with Regard to Animals, Humans, and the Environment. Anthrozoos, 2017, 30, 195-211.	1.4	6
69	Dog rabies data reported to multinational organizations from Southern and Eastern African countries. BMC Research Notes, 2017, 10, 199.	1.4	5
70	Effect of dry period length on milk yield over multiple lactations. Journal of Dairy Science, 2017, 100, 739-749.	3.4	24
71	Quantifying Preferences of Farmers and Veterinarians for National Animal Health Programs: The Example of Bovine Mastitis and Antimicrobial Usage in Switzerland. Frontiers in Veterinary Science, 2017, 4, 82.	2.2	9
72	The intention of North-Western Ethiopian dairy farmers to control mastitis. PLoS ONE, 2017, 12, e0182727.	2.5	10

#	Article	IF	CITATIONS
73	Effects of dry period length on production, cash flows and greenhouse gas emissions of the dairy herd: A dynamic stochastic simulation model. PLoS ONE, 2017, 12, e0187101.	2.5	11
74	A prognostic model to predict the success of artificial insemination in dairy cows based on readily available data. Journal of Dairy Science, 2016, 99, 6764-6779.	3.4	20
75	A stochastic simulation model for brucellosis eradication in goat flocks in an area with high flock prevalence but low animal prevalence. Small Ruminant Research, 2016, 136, 227-237.	1.2	4
76	Farm-economic analysis of reducing antimicrobial use whilst adopting improved management strategies on farrow-to-finish pig farms. Preventive Veterinary Medicine, 2016, 129, 74-87.	1.9	107
77	Changes in perceptions and motivators that influence the implementation of on-farm Salmonella control measures by pig farmers in England. Preventive Veterinary Medicine, 2016, 133, 22-30.	1.9	11
78	Using farmers' attitude and social pressures to design voluntary Bluetongue vaccination strategies. Preventive Veterinary Medicine, 2016, 133, 114-119.	1.9	42
79	Failure and preventive costs of mastitis on Dutch dairy farms. Journal of Dairy Science, 2016, 99, 8365-8374.	3.4	74
80	Economic evaluation of stall stocking density of lactating dairy cows. Journal of Dairy Science, 2016, 99, 3848-3857.	3.4	9
81	Assessing, and understanding, European organic dairy farmers' intentions to improve herd health. Preventive Veterinary Medicine, 2016, 133, 84-96.	1.9	26
82	Cost-benefit analysis of foot and mouth disease control in Ethiopia. Preventive Veterinary Medicine, 2016, 132, 67-82.	1.9	25
83	Incidence and economic impact of rabies in the cattle population of Ethiopia. Preventive Veterinary Medicine, 2016, 130, 67-76.	1.9	23
84	Bayesian integration of sensor information and a multivariate dynamic linear model for prediction of dairy cow mastitis. Journal of Dairy Science, 2016, 99, 7344-7361.	3.4	46
85	Effect of different scenarios for selective dry-cow therapy on udder health, antimicrobial usage, and economics. Journal of Dairy Science, 2016, 99, 3753-3764.	3.4	62
86	Effective lactation yield: A measure to compare milk yield between cows with different dry period lengths. Journal of Dairy Science, 2016, 99, 2956-2966.	3.4	20
87	Intention of dog owners to participate in rabies control measures in Flores Island, Indonesia. Preventive Veterinary Medicine, 2016, 126, 138-150.	1.9	16
88	Farmers' beliefs and voluntary vaccination schemes: Bluetongue in Dutch dairy cattle. Food Policy, 2015, 57, 40-49.	6.0	31
89	Technical note: Validation of sensor-recorded lying bouts in lactating dairy cows using a 2-sensor approach. Journal of Dairy Science, 2015, 98, 7911-7916.	3.4	34
90	Short communication: Protease activity measurement in milk as a diagnostic test for clinical mastitis in dairy cows. Journal of Dairy Science, 2015, 98, 4613-4618.	3.4	12

#	Article	IF	CITATIONS
91	Economic consequences of investing in sensor systems on dairy farms. Computers and Electronics in Agriculture, 2015, 119, 33-39.	7.7	26
92	Review on Dog Rabies Vaccination Coverage in Africa: A Question of Dog Accessibility or Cost Recovery?. PLoS Neglected Tropical Diseases, 2015, 9, e0003447.	3.0	85
93	Uptake of Rabies Control Measures by Dog Owners in Flores Island, Indonesia. PLoS Neglected Tropical Diseases, 2015, 9, e0003589.	3.0	28
94	Effect of sensor systems for cow management on milk production, somatic cell count, and reproduction. Journal of Dairy Science, 2015, 98, 3896-3905.	3.4	31
95	Cow-specific risk factors for clinical mastitis in Brazilian dairy cattle. Preventive Veterinary Medicine, 2015, 121, 297-305.	1.9	52
96	The optimal number of heifer calves to be reared as dairy replacements. Journal of Dairy Science, 2015, 98, 861-871.	3.4	37
97	Characterization of Dutch dairy farms using sensor systems for cow management. Journal of Dairy Science, 2015, 98, 709-717.	3.4	58
98	Farmers' Intentions to Implement Foot and Mouth Disease Control Measures in Ethiopia. PLoS ONE, 2015, 10, e0138363.	2.5	21
99	An ex ante analysis on the use of activity meters for automated estrus detection: To invest or not to invest?. Journal of Dairy Science, 2014, 97, 6869-6887.	3.4	56
100	Financial aspects of veterinary herd health management programmes. Veterinary Record, 2014, 175, 224-224.	0.3	9
101	The average culling rate of Dutch dairy herds over the years 2007 to 2010 and its association with herd reproduction, performance and health. Journal of Dairy Research, 2014, 81, 1-8.	1.4	307
102	Short communication: Effectiveness of tools provided by a dairy company on udder health in Dutch dairy farms. Journal of Dairy Science, 2014, 97, 1529-1534.	3.4	5
103	Associations between farmer participation in veterinary herd health management programs and farm performance. Journal of Dairy Science, 2014, 97, 1336-1347.	3.4	27
104	Efficiency of dairy farms participating and not participating in veterinary herd health management programs. Preventive Veterinary Medicine, 2014, 117, 478-486.	1.9	10
105	Effectiveness of the BSE interventions in Japan. Preventive Veterinary Medicine, 2014, 117, 295-300.	1.9	5
106	Economic impact of foot and mouth disease outbreaks on smallholder farmers in Ethiopia. Preventive Veterinary Medicine, 2014, 116, 26-36.	1.9	49
107	Expected utility of voluntary vaccination in the middle of an emergent Bluetongue virus serotype 8 epidemic: A decision analysis parameterized for Dutch circumstances. Preventive Veterinary Medicine, 2014, 115, 75-87.	1.9	12
108	Cow characteristics and their association with production performance with different dry period lengths. Journal of Dairy Science, 2014, 97, 4922-4931.	3.4	12

#	Article	IF	CITATIONS
109	The association of ruminal pH and some metabolic parameters with conception rate at first artificial insemination in Thai dairy cows. Tropical Animal Health and Production, 2013, 45, 1183-1190.	1.4	7
110	Public multi-criteria assessment for societal concerns and gradual labelling. Food Policy, 2013, 40, 97-108.	6.0	8
111	Improving bovine udder health: A national mastitis control program in the Netherlands. Journal of Dairy Science, 2013, 96, 1301-1311.	3.4	56
112	Effect of different dry period lengths on milk production and somatic cell count in subsequent lactations in commercial Dutch dairy herds. Journal of Dairy Science, 2013, 96, 2988-3001.	3.4	39
113	Dairy farmers' attitudes and intentions towards improving dairy cow foot health. Livestock Science, 2013, 155, 103-113.	1.6	113
114	First-calving age and first-lactation milk production on Dutch dairy farms. Journal of Dairy Science, 2013, 96, 981-992.	3.4	44
115	Veterinarian awareness of farmer goals and attitudes to herd health management in The Netherlands. Veterinary Journal, 2013, 198, 224-228.	1.7	45
116	Veterinary herd health management programs on dairy farms in the Netherlands: Use, execution, and relations to farmer characteristics. Journal of Dairy Science, 2013, 96, 1623-1637.	3.4	64
117	Invited review: Sensors to support health management on dairy farms. Journal of Dairy Science, 2013, 96, 1928-1952.	3.4	341
118	Costs of Rabies Control: An Economic Calculation Method Applied to Flores Island. PLoS ONE, 2013, 8, e83654.	2.5	34
119	The economic effects of whole-herd versus selective anthelmintic treatment strategies in dairy cows. Journal of Dairy Science, 2012, 95, 2977-2987.	3.4	22
120	Mastitis alert preferences of farmers milking with automatic milking systems. Journal of Dairy Science, 2012, 95, 2523-2530.	3.4	39
121	Comparing technical efficiency of farms with an automatic milking system and a conventional milking system. Journal of Dairy Science, 2012, 95, 7391-7398.	3.4	61
122	Estimating the costs of rearing young dairy cattle in the Netherlands using a simulation model that accounts for uncertainty related to diseases. Preventive Veterinary Medicine, 2012, 106, 214-224.	1.9	54
123	Economic consequences of immediate or delayed insemination of a cow in oestrus. Veterinary Record, 2012, 171, 17-17.	0.3	15
124	The perception of veterinary herd health management by Dutch dairy farmers and its current status in the Netherlands: A survey. Preventive Veterinary Medicine, 2012, 104, 207-215.	1.9	62
125	ParaCalc®—A novel tool to evaluate the economic importance of worm infections on the dairy farm. Veterinary Parasitology, 2012, 184, 204-211.	1.8	42
126	Improved Knowledge About Conception Rates Influences the Decision to Stop Insemination in Dairy Cows. Reproduction in Domestic Animals, 2012, 47, 820-826.	1.4	6

Ηένκ Ηοgeveen

#	Article	IF	CITATIONS
127	What veterinarians need to know about communication to optimise their role as advisors on udder health in dairy herds. New Zealand Veterinary Journal, 2011, 59, 8-15.	0.9	78
128	Economic aspects of mastitis: New developments. New Zealand Veterinary Journal, 2011, 59, 16-23.	0.9	399
129	Cow-specific treatment of clinical mastitis: An economic approach. Journal of Dairy Science, 2011, 94, 174-188.	3.4	63
130	Analysis of the economically optimal voluntary waiting period for first insemination. Journal of Dairy Science, 2011, 94, 3811-3823.	3.4	55
131	The relationship between milking interval and somatic cell count in automatic milking systems. Journal of Dairy Science, 2011, 94, 4531-4537.	3.4	18
132	Cow Effects and Estimation of Success of First and Following Inseminations in Dutch Dairy Cows. Reproduction in Domestic Animals, 2011, 46, 1043-1049.	1.4	15
133	Sensor measurements revealed: Predicting the Gram-status of clinical mastitis causal pathogens. Computers and Electronics in Agriculture, 2011, 77, 86-94.	7.7	8
134	Perceptions, circumstances and motivators that influence implementation of zoonotic control programs on cattle farms. Preventive Veterinary Medicine, 2010, 93, 276-285.	1.9	197
135	Decision-tree induction to detect clinical mastitis with automatic milking. Computers and Electronics in Agriculture, 2010, 70, 60-68.	7.7	44
136	Simplify the interpretation of alert lists for clinical mastitis in automatic milking systems. Computers and Electronics in Agriculture, 2010, 71, 50-56.	7.7	12
137	Awareness and perceived value of economic information in controlling somatic cell count. Veterinary Record, 2010, 166, 263-267.	0.3	27
138	Sensors and Clinical Mastitis—The Quest for the Perfect Alert. Sensors, 2010, 10, 7991-8009.	3.8	120
139	Sub-optimal economic behaviour with respect to mastitis management. European Review of Agricultural Economics, 2010, 37, 553-568.	3.1	31
140	Economic consequences of reproductive performance in dairy cattle. Theriogenology, 2010, 74, 835-846.	2.1	152
141	Costs and efficacy of management measures to improve udder health on Dutch dairy farms. Journal of Dairy Science, 2010, 93, 115-124.	3.4	50
142	Assessing economic consequences of foot disorders in dairy cattle using a dynamic stochastic simulation model. Journal of Dairy Science, 2010, 93, 2419-2432.	3.4	186
143	Somatic cell count assessment at the quarter or cow milking level. Journal of Dairy Science, 2010, 93, 3358-3364.	3.4	28
144	Discriminating between true-positive and false-positive clinical mastitis alerts from automatic milking systems. Journal of Dairy Science, 2010, 93, 2559-2568.	3.4	43

#	Article	IF	CITATIONS
145	Relationship between udder health and hygiene on farms with an automatic milking system. Journal of Dairy Science, 2010, 93, 4019-4033.	3.4	55
146	Bioeconomic modeling of lactational antimicrobial treatment of new bovine subclinical intramammary infections caused by contagious pathogens. Journal of Dairy Science, 2010, 93, 4034-4044.	3.4	45
147	Detection of clinical mastitis with sensor data from automatic milking systems is improved by using decision-tree induction. Journal of Dairy Science, 2010, 93, 3616-3627.	3.4	62
148	Effect of milk yield characteristics, breed, and parity on success of the first insemination in Dutch dairy cows. Journal of Dairy Science, 2010, 93, 5179-5187.	3.4	44
149	Reliability of the bulk milk somatic cell count as an indication of average herd somatic cell count. Journal of Dairy Research, 2009, 76, 490-496.	1.4	12
150	The price of the precautionary principle: Cost-effectiveness of BSE intervention strategies in the Netherlands. Preventive Veterinary Medicine, 2009, 89, 212-222.	1.9	15
151	Preferences of cost factors for mastitis management among Dutch dairy farmers using adaptive conjoint analysis. Preventive Veterinary Medicine, 2009, 92, 351-359.	1.9	33
152	Cost estimation of heifer mastitis in early lactation by stochastic modelling. Veterinary Microbiology, 2009, 134, 121-127.	1.9	29
153	Production loss due to new subclinical mastitis in Dutch dairy cows estimated with a test-day model. Journal of Dairy Science, 2009, 92, 599-606.	3.4	138
154	Providing probability distributions for the causal pathogen of clinical mastitis using naive Bayesian networks. Journal of Dairy Science, 2009, 92, 2598-2609.	3.4	19
155	Meta-analysis of dry cow management for dairy cattle. Part 1. Protection against new intramammary infections. Journal of Dairy Science, 2009, 92, 3134-3149.	3.4	83
156	Using sensor data patterns from an automatic milking system to develop predictive variables for classifying clinical mastitis and abnormal milk. Computers and Electronics in Agriculture, 2008, 62, 169-181.	7.7	44
157	The Influence of Cow Factors on the Incidence of Clinical Mastitis in Dairy Cows. Journal of Dairy Science, 2008, 91, 1391-1402.	3.4	83
158	Automatic Detection of Clinical Mastitis Is Improved by In-Line Monitoring of Somatic Cell Count. Journal of Dairy Science, 2008, 91, 4560-4570.	3.4	63
159	Costs of mastitis: facts and perception. Journal of Dairy Research, 2008, 75, 113-120.	1.4	236
160	Stochastic modelling to assess economic effects of treatment of chronic subclinical mastitis caused by <i>Streptococcus uberis</i> . Journal of Dairy Research, 2007, 74, 459-467.	1.4	26
161	Motivation of Dairy Farmers to Improve Mastitis Management. Journal of Dairy Science, 2007, 90, 4466-4477.	3.4	140
162	Stochastic Modeling to Determine the Economic Effects of Blanket, Selective, and No Dry Cow Therapy. Journal of Dairy Science, 2007, 90, 1225-1234.	3.4	53

#	Article	IF	CITATIONS
163	The Profitability of Automatic Milking on Dutch Dairy Farms. Journal of Dairy Science, 2007, 90, 239-248.	3.4	68
164	Economic effects of bovine mastitis and mastitis management: A review. Veterinary Quarterly, 2007, 29, 18-31.	6.7	792
165	Trading "Ethical Preferences―in the Market: Outline of a Politically Liberal Framework for the Ethical Characterization of Foods. Journal of Agricultural and Environmental Ethics, 2007, 21, 3-27.	1.7	7
166	Effectiveness of simulated interventions in reducing the estimated prevalence of <i>E. coli</i> O157:H7 in lactating cows in dairy herds. Veterinary Research, 2007, 38, 755-771.	3.0	19
167	Simulating Escherichia coli O157:H7 transmission to assess effectiveness of interventions in Dutch dairy-beef slaughterhouses. Preventive Veterinary Medicine, 2006, 77, 15-30.	1.9	17
168	Cost-effectiveness of beef slaughterhouse decontamination measures in the Netherlands. Acta Agriculturae Scandinavica Section C: Food Economics, 2006, 3, 161-173.	0.1	1
169	Use of partial budgeting to determine the economic benefits of antibiotic treatment of chronic subclinical mastitis caused by Streptococcus uberis or Streptococcus dysgalactiae. Journal of Dairy Research, 2005, 72, 75-85.	1.4	44
170	A Partial Budget Model to Estimate Economic Benefits of Lactational Treatment of Subclinical Staphylococcus aureus Mastitis. Journal of Dairy Science, 2005, 88, 4273-4287.	3.4	91
171	Decision tree analysis to evaluate dry cow strategies under UK conditions. Journal of Dairy Research, 2004, 71, 409-418.	1.4	33
172	Electrical Conductivity of Milk: Ability to Predict Mastitis Status. Journal of Dairy Science, 2004, 87, 1099-1107.	3.4	146
173	Recovery of Cow Teats after Milking as Determined by Ultrasonographic Scanning. Journal of Dairy Science, 2001, 84, 2599-2606.	3.4	64
174	Relationship Between Teat-End Callosity and Occurrence of Clinical Mastitis. Journal of Dairy Science, 2001, 84, 2664-2672.	3.4	97
175	Milking interval, milk production and milk flow-rate in an automatic milking system. Livestock Science, 2001, 72, 157-167.	1.2	96
176	The Effect of the Introduction of Automatic Milking Systems on Milk Quality. Journal of Dairy Science, 2000, 83, 1998-2003.	3.4	72
177	Classification and Longitudinal Examination of Callused Teat Ends in Dairy Cows. Journal of Dairy Science, 2000, 83, 2795-2804.	3.4	107
178	The body weight of the dairy cow I. Introductory study into body weight changes in dairy cows as a management aid. Livestock Science, 1997, 48, 175-186.	1.2	37
179	Effects of Concentrate Intake on Subsequent Roughage Intake and Eating Behavior of Cows in an Automatic Milking System. Journal of Dairy Science, 1996, 79, 1572-1580.	3.4	29
180	CONDITIONAL CAUSAL MODELING. Applied Artificial Intelligence, 1995, 9, 181-212.	3.2	6

#	Article	IF	CITATIONS
181	A Knowledge-Based System for Diagnosis of Mastitis Problems at the Herd Level. 1. Concepts. Journal of Dairy Science, 1995, 78, 1430-1440.	3.4	4
182	A Knowledge-Based System for Diagnosis of Mastitis Problems at the Herd Level. 2. Machine Milking. Journal of Dairy Science, 1995, 78, 1441-1455.	3.4	6
183	Cystic ovarian disease in Dutch dairy cattle, I. Incidence, risk factors and consequences. Livestock Science, 1994, 38, 191-197.	1.2	38
184	Cystic ovarian disease in Dutch dairy cattle, II. A simulation model for predicting the herd-level consequences under varying management factors. Livestock Science, 1994, 38, 199-206.	1.2	1
185	Knowledge Representation Methods for Dairy Decision Support Systems. Journal of Dairy Science, 1994, 77, 3704-3715.	3.4	11
186	Short- and long-term effects of a 2 year dairy herd health and management program. Preventive Veterinary Medicine, 1992, 13, 53-58.	1.9	17
187	Development of an integrated Knowledge-Based System for Management Support on Dairy Farms. Journal of Dairy Science, 1991, 74, 4377-4384.	3.4	14
188	Analysis of Epidemiological and Economic Impact of Foot-and-Mouth Disease Outbreaks in Four District Areas in Thailand. Frontiers in Veterinary Science, 0, 9, .	2.2	3
189	Estimating the Effect of a Bovine Viral Diarrhea Virus Control Program: An Empirical Study on the Performance of Dutch Dairy Herds. Frontiers in Veterinary Science, 0, 9, .	2.2	3