
Jiacheng Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6913755/publications.pdf Version: 2024-02-01

Ιλαμένα Υλνά

#	Article	IF	CITATIONS
1	Regulated, greenhouse gas, and particulate emissions from lean-burn and stoichiometric natural gas heavy-duty vehicles on different fuel compositions. Fuel, 2016, 175, 146-156.	3.4	84
2	Gasoline Particulate Filters as an Effective Tool to Reduce Particulate and Polycyclic Aromatic Hydrocarbon Emissions from Gasoline Direct Injection (GDI) Vehicles: A Case Study with Two GDI Vehicles. Environmental Science & Technology, 2018, 52, 3275-3284.	4.6	61
3	Impacts of dimethyl carbonate blends on gaseous and particulate emissions from a heavy-duty diesel engine. Fuel, 2016, 184, 681-688.	3.4	44
4	Impacts of gasoline aromatic and ethanol levels on the emissions from GDI vehicles: Part 2. Influence on particulate matter, black carbon, and nanoparticle emissions. Fuel, 2019, 252, 812-820.	3.4	44
5	Characterizing emission rates of regulated pollutants from model year 2012 + heavy-duty diesel vehicles equipped with DPF and SCR systems. Science of the Total Environment, 2018, 619-620, 765-771.	3.9	43
6	Impacts of gasoline aromatic and ethanol levels on the emissions from GDI vehicles: Part 1. Influence on regulated and gaseous toxic pollutants. Fuel, 2019, 252, 799-811.	3.4	41
7	Physical, chemical, and toxicological characteristics of particulate emissions from current technology gasoline direct injection vehicles. Science of the Total Environment, 2019, 650, 1182-1194.	3.9	35
8	Emissions and Fuel Economy Evaluation from Two Current Technology Heavy-Duty Trucks Operated on HVO and FAME Blends. SAE International Journal of Fuels and Lubricants, 0, 9, 177-190.	0.2	31
9	Characterization of particulate matter emitted by a marine engine operated with liquefied natural gas and diesel fuels. Atmospheric Environment, 2020, 220, 117030.	1.9	30
10	Comprehensive analysis of the air quality impacts of switching a marine vessel from diesel fuel to natural gas. Environmental Pollution, 2020, 266, 115404.	3.7	27
11	Emissions from a flex fuel GDI vehicle operating on ethanol fuels show marked contrasts in chemical, physical and toxicological characteristics as a function of ethanol content. Science of the Total Environment, 2019, 683, 749-761.	3.9	26
12	Investigation of the Effect of Mid- And High-Level Ethanol Blends on the Particulate and the Mobile Source Air Toxic Emissions from a Gasoline Direct Injection Flex Fuel Vehicle. Energy & Fuels, 2019, 33, 429-440.	2.5	25
13	Size and morphology of soot produced by a dual-fuel marine engine. Journal of Aerosol Science, 2019, 138, 105448.	1.8	23
14	Sources of variance in BC mass measurements from a small marine engine: Influence of the instruments, fuels and loads. Atmospheric Environment, 2018, 182, 128-137.	1.9	20
15	Intermediate and high ethanol blends reduce secondary organic aerosol formation from gasoline direct injection vehicles. Atmospheric Environment, 2020, 220, 117064.	1.9	20
16	Toxicological responses in human airway epithelial cells (BEAS-2B) exposed to particulate matter emissions from gasoline fuels with varying aromatic and ethanol levels. Science of the Total Environment, 2020, 706, 135732.	3.9	20
17	Material compatibility evaluation for elastomers, plastics, and metals exposed to ethanol and butanol blends. Fuel, 2016, 163, 248-259.	3.4	17
18	Fuel Effects on PM Emissions from Different Vehicle/Engine Configurations: A Literature Review. , 0, , .		16

JIACHENG YANG

#	Article	IF	CITATIONS
19	Using a new Mobile Atmospheric Chamber (MACh) to investigate the formation of secondary aerosols from mobile sources: The case of gasoline direct injection vehicles. Journal of Aerosol Science, 2019, 133, 1-11.	1.8	16
20	A comparison of a mini-PEMS and a 1065 compliant PEMS for on-road gaseous and particulate emissions from a light duty diesel truck. Science of the Total Environment, 2018, 640-641, 364-376.	3.9	15
21	Characterizing emission rates of regulated and unregulated pollutants from two ultra-low NOx CNG heavy-duty vehicles. Fuel, 2020, 277, 118192.	3.4	15
22	Catalyzed Gasoline Particulate Filters Reduce Secondary Organic Aerosol Production from Gasoline Direct Injection Vehicles. Environmental Science & Technology, 2019, 53, 3037-3047.	4.6	14
23	Evaluation of emissions benefits of OBD-based repairs for potential application in a heavy-duty vehicle Inspection and Maintenance program. Atmospheric Environment, 2021, 247, 118186.	1.9	13
24	Evaluating the relationships between aromatic and ethanol levels in gasoline on secondary aerosol formation from a gasoline direct injection vehicle. Science of the Total Environment, 2020, 737, 140333.	3.9	12
25	Impacts of Exhaust Transfer System Contamination on Particulate Matter Measurements. Emission Control Science and Technology, 2020, 6, 163-177.	0.8	10
26	Emissions from Advanced Ultra-Low-NO _x Heavy-Duty Natural Gas Vehicles. , 0, , .		8
27	Evaluation of Partial Flow Dilution Systems for Very Low PM Mass Measurements. Emission Control Science and Technology, 2018, 4, 247-259.	0.8	6
28	Gaseous and Particulate Emissions from a Waste Hauler Equipped with a Stoichiometric Natural Gas Engine on Different Fuel Compositions. , 0, , .		5