List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6913657/publications.pdf Version: 2024-02-01

187 papers	12,376 citations	20759 60 h-index	29081 104 g-index
193	193	193	15987
all docs	docs citations	times ranked	citing authors

VANCLU

#	Article	IF	CITATIONS
1	CD24 and Siglec-10 Selectively Repress Tissue Damage–Induced Immune Responses. Science, 2009, 323, 1722-1725.	6.0	670
2	TSC–mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. Journal of Experimental Medicine, 2008, 205, 2397-2408.	4.2	615
3	mTOR Regulation and Therapeutic Rejuvenation of Aging Hematopoietic Stem Cells. Science Signaling, 2009, 2, ra75.	1.6	569
4	The Therapeutic Effect of Anti-HER2/neu Antibody Depends on Both Innate and Adaptive Immunity. Cancer Cell, 2010, 18, 160-170.	7.7	474
5	In vivo evidence for a dependence on interleukin 15 for survival of natural killer cells. Blood, 2002, 100, 3633-3638.	0.6	382
6	Targeting HIF1α Eliminates Cancer Stem Cells in Hematological Malignancies. Cell Stem Cell, 2011, 8, 399-411.	5.2	368
7	FOXP3 Is an X-Linked Breast Cancer Suppressor Gene and an Important Repressor of the HER-2/ErbB2 Oncogene. Cell, 2007, 129, 1275-1286.	13.5	350
8	CD24: from A to Z. Cellular and Molecular Immunology, 2010, 7, 100-103.	4.8	325
9	Dendritic cells in the thymus contribute to T-regulatory cell induction. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19869-19874.	3.3	265
10	Induction of Siglec-G by RNA Viruses Inhibits the Innate Immune Response by Promoting RIG-I Degradation. Cell, 2013, 152, 467-478.	13.5	228
11	FOXP3 is a novel transcriptional repressor for the breast cancer oncogene SKP2. Journal of Clinical Investigation, 2007, 117, 3765-73.	3.9	201
12	Somatic Single Hits Inactivate the X-Linked Tumor Suppressor FOXP3 in the Prostate. Cancer Cell, 2009, 16, 336-346.	7.7	190
13	A reappraisal of CTLA-4 checkpoint blockade in cancer immunotherapy. Cell Research, 2018, 28, 416-432.	5.7	188
14	Combination Therapy with Anti–CTL Antigen-4 and Anti-4-1BB Antibodies Enhances Cancer Immunity and Reduces Autoimmunity. Cancer Research, 2006, 66, 7276-7284.	0.4	165
15	B7-H3 Enhances Tumor Immunity In Vivo by Costimulating Rapid Clonal Expansion of Antigen-Specific CD8+ Cytolytic T Cells. Journal of Immunology, 2004, 173, 5445-5450.	0.4	163
16	Amelioration of sepsis by inhibiting sialidase-mediated disruption of the CD24-SiglecG interaction. Nature Biotechnology, 2011, 29, 428-435.	9.4	158
17	T Regulatory Cells and Priming the Suppressive Tumor Microenvironment. Frontiers in Immunology, 2019, 10, 2453.	2.2	156
18	Proto-oncogene PML controls genes devoted to MHC class I antigen presentation. Nature, 1998, 396, 373-376.	13.7	149

#	Article	IF	CITATIONS
19	Co-stimulation of murine CD4 T cell growth: cooperation between B7 and heat-stable antigen. European Journal of Immunology, 1992, 22, 2855-2859.	1.6	135
20	De novo Induction of a Cancer/Testis Antigen by 5-Aza-2′-Deoxycytidine Augments Adoptive Immunotherapy in a Murine Tumor Model. Cancer Research, 2006, 66, 1105-1113.	0.4	133
21	B7DC/PDL2 Promotes Tumor Immunity by a PD-1–independent Mechanism. Journal of Experimental Medicine, 2003, 197, 1721-1730.	4.2	130
22	Distinct Costimulatory Molecules Are Required for the Induction of Effector and Memory Cytotoxic T Lymphocytes. Journal of Experimental Medicine, 1997, 185, 251-262.	4.2	125
23	CD24-Siglec G/10 discriminates danger- from pathogen-associated molecular patterns. Trends in Immunology, 2009, 30, 557-561.	2.9	122
24	Microbial induction of co-stimulatory activity for CD4 T-cell growth. International Immunology, 1991, 3, 323-332.	1.8	118
25	Cutting Edge: Broad Expression of the FoxP3 Locus in Epithelial Cells: A Caution against Early Interpretation of Fatal Inflammatory Diseases following In Vivo Depletion of FoxP3-Expressing Cells. Journal of Immunology, 2008, 180, 5163-5166.	0.4	118
26	Broad and direct interaction between TLR and Siglec families of pattern recognition receptors and its regulation by Neu1. ELife, 2014, 3, e04066.	2.8	117
27	B7H Costimulates Clonal Expansion of, and Cognate Destruction of Tumor Cells by, CD8+ T Lymphocytes In Vivo. Journal of Experimental Medicine, 2001, 194, 1339-1348.	4.2	111
28	FOXP3 Controls an miR-146/NF-κB Negative Feedback Loop That Inhibits Apoptosis in Breast Cancer Cells. Cancer Research, 2015, 75, 1703-1713.	0.4	109
29	CD24 Expression on T Cells Is Required for Optimal T Cell Proliferation in Lymphopenic Host. Journal of Experimental Medicine, 2004, 200, 1083-1089.	4.2	107
30	Gene-targeted B-deficient mice reveal a critical role for B cells in the CD4 T cell response. International Immunology, 1995, 7, 1353-1362.	1.8	103
31	CTLA-4–B7 Interaction Is Sufficient to Costimulate T Cell Clonal Expansion. Journal of Experimental Medicine, 1997, 185, 1327-1336.	4.2	103
32	Innate NKT lymphocytes confer superior adaptive immunity via tumor-capturing dendritic cells. Journal of Experimental Medicine, 2005, 202, 1507-1516.	4.2	103
33	CD24 is a genetic modifier for risk and progression of multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15041-15046.	3.3	102
34	Human CTLA4 knock-in mice unravel the quantitative link between tumor immunity and autoimmunity induced by anti–CTLA-4 antibodies. Blood, 2005, 106, 3127-3133.	0.6	100
35	FOXP3 Up-regulates <i>p21</i> Expression by Site-Specific Inhibition of Histone Deacetylase 2/Histone Deacetylase 4 Association to the Locus. Cancer Research, 2009, 69, 2252-2259.	0.4	97
36	Mitochondrial Dynamics: Biogenesis, Fission, Fusion, and Mitophagy in the Regulation of Stem Cell Behaviors. Stem Cells International, 2019, 2019, 1-15.	1.2	97

#	Article	IF	CITATIONS
37	Hypoxia-inducible factors in cancer stem cells and inflammation. Trends in Pharmacological Sciences, 2015, 36, 374-383.	4.0	96
38	Chronic <scp>mTOR</scp> inhibition in mice with rapamycin alters <scp>T</scp> , <scp> B</scp> , myeloid, and innate lymphoid cells and gut flora and prolongs life of immuneâ€deficient mice. Aging Cell, 2015, 14, 945-956.	3.0	94
39	The Scurfy mutation of FoxP3 in the thymus stroma leads to defective thymopoiesis. Journal of Experimental Medicine, 2005, 202, 1141-1151.	4.2	93
40	Mammalian target of rapamycin activation underlies HSC defects in autoimmune disease and inflammation in mice. Journal of Clinical Investigation, 2010, 120, 4091-4101.	3.9	93
41	Uncoupling therapeutic from immunotherapy-related adverse effects for safer and effective anti-CTLA-4 antibodies in CTLA4 humanized mice. Cell Research, 2018, 28, 433-447.	5.7	91
42	CD24 Controls Expansion and Persistence of Autoreactive T Cells in the Central Nervous System during Experimental Autoimmune Encephalomyelitis. Journal of Experimental Medicine, 2004, 200, 447-458.	4.2	89
43	Identification of a Tumor Suppressor Relay between the FOXP3 and the Hippo Pathways in Breast and Prostate Cancers. Cancer Research, 2011, 71, 2162-2171.	0.4	89
44	Anti-CTLA-4 antibodies in cancer immunotherapy: selective depletion of intratumoral regulatory T cells or checkpoint blockade?. Cell and Bioscience, 2018, 8, 30.	2.1	88
45	Antigenic drift as a mechanism for tumor evasion of destruction by cytolytic T lymphocytes. Journal of Clinical Investigation, 2003, 111, 1487-1496.	3.9	87
46	Preserving the CTLA-4 Checkpoint for Safer and More Effective Cancer Immunotherapy. Trends in Pharmacological Sciences, 2020, 41, 4-12.	4.0	82
47	The Tuberous Sclerosis Complex–Mammalian Target of Rapamycin Pathway Maintains the Quiescence and Survival of Naive T Cells. Journal of Immunology, 2011, 187, 1106-1112.	0.4	80
48	Tumor growth impedes natural-killer-cell maturation in the bone marrow. Blood, 2006, 108, 246-252.	0.6	79
49	Viral induction of co-stimulatory activity on antigen-presenting cells bypasses the need for CD4+ T-cell help in CD8+ T-cell responses. Current Biology, 1994, 4, 499-505.	1.8	77
50	Flavivirus infection up-regulates the expression of class I and class II major histocompatibility antigens on and enhances T cell recognition of astrocytes in vitro. Journal of Neuroimmunology, 1989, 21, 157-168.	1.1	76
51	CD24: a genetic checkpoint in T cell homeostasis and autoimmune diseases. Trends in Immunology, 2007, 28, 315-320.	2.9	76
52	Siglec-G–CD24 axis controls the severity of graft-versus-host disease in mice. Blood, 2014, 123, 3512-3523.	0.6	76
53	Hijacking antibody-induced CTLA-4 lysosomal degradation for safer and more effective cancer immunotherapy. Cell Research, 2019, 29, 609-627.	5.7	74
54	An mTORC1-Mdm2-Drosha Axis for miRNA Biogenesis in Response to Glucose- and Amino Acid-Deprivation. Molecular Cell, 2015, 57, 708-720.	4.5	72

#	Article	IF	CITATIONS
55	A Dinucleotide Deletion in CD24 Confers Protection against Autoimmune Diseases. PLoS Genetics, 2007, 3, e49.	1.5	70
56	Siglec-G/10 in self-nonself discrimination of innate and adaptive immunity. Glycobiology, 2014, 24, 800-806.	1.3	70
57	CD28-independent Induction of T Helper Cells and Immunoglobulin Class Switches Requires Costimulation by the Heat-stable Antigen. Journal of Experimental Medicine, 1998, 187, 1151-1156.	4.2	67
58	FOXP3 Orchestrates H4K16 Acetylation and H3K4 Trimethylation for Activation of Multiple Genes by Recruiting MOF and Causing Displacement of PLU-1. Molecular Cell, 2011, 44, 770-784.	4.5	67
59	Failed Adoptive Immunotherapy with Tumor-Specific T Cells. Cancer Research, 2004, 64, 8062-8067.	0.4	66
60	NF1 Inactivation in Adult Acute Myelogenous Leukemia. Clinical Cancer Research, 2010, 16, 4135-4147.	3.2	66
61	The heat-stable antigen determines pathogenicity of self-reactive T cells in experimental autoimmune encephalomyelitis. Journal of Clinical Investigation, 2000, 105, 1227-1232.	3.9	64
62	The axis of mTOR-mitochondria-ROS and stemness of the hematopoietic stem cells. Cell Cycle, 2009, 8, 1158-1160.	1.3	61
63	FOXP3: Genetic and epigenetic implications for autoimmunity. Journal of Autoimmunity, 2013, 41, 72-78.	3.0	60
64	Cytotoxic T Lymphocytes to An Unmutated Tumor Rejection Antigen P1A: Normal Development but Restrained Effector Function In Vivo. Journal of Experimental Medicine, 1999, 189, 811-820.	4.2	59
65	Perinatal Blockade of B7-1 and B7-2 Inhibits Clonal Deletion of Highly Pathogenic Autoreactive T Cells. Journal of Experimental Medicine, 2002, 195, 959-971.	4.2	59
66	Antitumor T-cell responses contribute to the effects of dasatinib on c-KIT mutant murine mastocytoma and are potentiated by anti-OX40. Blood, 2012, 120, 4533-4543.	0.6	56
67	Echinomycin protects mice against relapsed acute myeloid leukemia without adverse effect on hematopoietic stem cells. Blood, 2014, 124, 1127-1135.	0.6	55
68	How Does an Anti-CTLA-4 Antibody Promote Cancer Immunity?. Trends in Immunology, 2018, 39, 953-956.	2.9	55
69	Epm2a suppresses tumor growth in an immunocompromised host by inhibiting Wnt signaling. Cancer Cell, 2006, 10, 179-190.	7.7	54
70	Intracellular CD24 disrupts the ARF–NPM interaction and enables mutational and viral oncogene-mediated p53 inactivation. Nature Communications, 2015, 6, 5909.	5.8	54
71	MYCN Amplification Is Associated with Repressed Cellular Immunity in Neuroblastoma: An In Silico Immunological Analysis of TARGET Database. Frontiers in Immunology, 2017, 8, 1473.	2.2	52
72	E3 ligase FBXW7 is critical for RIG-I stabilization during antiviral responses. Nature Communications, 2017, 8, 14654.	5.8	51

#	Article	IF	CITATIONS
73	Siglecg Limits the Size of B1a B Cell Lineage by Down-Regulating NFκB Activation. PLoS ONE, 2007, 2, e997.	1.1	50
74	A Single-nucleotide Deletion Leads to Rapid Degradation ofTAP-1 mRNA in a Melanoma Cell Line. Journal of Biological Chemistry, 2003, 278, 15291-15296.	1.6	46
75	Rapid induction of a novel costimulatory activity on B cells by CD40 ligand. Current Biology, 1995, 5, 1303-1311.	1.8	45
76	MicroRNA-223 Promotes Type I Interferon Production in Antiviral Innate Immunity by Targeting Forkhead Box Protein O3 (FOXO3). Journal of Biological Chemistry, 2016, 291, 14706-14716.	1.6	45
77	Dimerization of Laforin Is Required for Its Optimal Phosphatase Activity, Regulation of GSK3Î ² Phosphorylation, and Wnt Signaling*. Journal of Biological Chemistry, 2006, 281, 34768-34774.	1.6	43
78	Is CTLA-4 a negative regulator for T-cell activation?. Trends in Immunology, 1997, 18, 570-572.	7.5	42
79	A Critical Role for <i>Rictor</i> in T Lymphopoiesis. Journal of Immunology, 2012, 189, 1850-1857.	0.4	42
80	Targeting HIF-1α abrogates PD-L1–mediated immune evasion in tumor microenvironment but promotes tolerance in normal tissues. Journal of Clinical Investigation, 2022, 132, .	3.9	42
81	B7-CTLA4 interaction enhances both production of antitumor cytotoxic T lymphocytes and resistance to tumor challenge. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 6284-6289.	3.3	41
82	Massive and destructive T cell response to homeostatic cue in CD24-deficient lymphopenic hosts. Journal of Experimental Medicine, 2006, 203, 1713-1720.	4.2	41
83	Ribosomal protein S27-like is a physiological regulator of p53 that suppresses genomic instability and tumorigenesis. ELife, 2014, 3, e02236.	2.8	41
84	Local Costimulation Reinvigorates Tumor-Specific Cytolytic T Lymphocytes for Experimental Therapy in Mice with Large Tumor Burdens. Journal of Immunology, 2001, 167, 3936-3943.	0.4	40
85	Clonal Deletion of Simian Virus 40 Large T Antigen-Specific T Cells in the Transgenic Adenocarcinoma of Mouse Prostate Mice: An Important Role for Clonal Deletion in Shaping the Repertoire of T Cells Specific for Antigens Overexpressed in Solid Tumors. Journal of Immunology, 2002, 169, 4761-4769.	0.4	40
86	CD24 polymorphisms affect risk and progression of chronic hepatitis B virus infection. Hepatology, 2009, 50, 735-742.	3.6	39
87	A Role for Cytoplasmic PML in Cellular Resistance to Viral Infection. PLoS ONE, 2008, 3, e2277.	1.1	38
88	Siglec-G represses DAMP-mediated effects on T cells. JCI Insight, 2017, 2, .	2.3	37
89	DT-13 attenuates human lung cancer metastasis via regulating NMIIA activity under hypoxia condition. Oncology Reports, 2016, 36, 991-999.	1.2	35
90	FoxP3: A genetic link between immunodeficiency and autoimmune diseases. Autoimmunity Reviews, 2006, 5, 399-402.	2.5	33

#	Article	IF	CITATIONS
91	CD24Fc protects against viral pneumonia in simian immunodeficiency virus-infected Chinese rhesus monkeys. Cellular and Molecular Immunology, 2020, 17, 887-888.	4.8	33
92	Activating Transcription Factor 2 and c-Jun–Mediated Induction of FoxP3 for Experimental Therapy of Mammary Tumor in the Mouse. Cancer Research, 2009, 69, 5954-5960.	0.4	32
93	A Critical Role for the Regulated Wnt–Myc Pathway in Naive T Cell Survival. Journal of Immunology, 2015, 194, 158-167.	0.4	32
94	CD24 and Fc fusion protein protects SIVmac239-infected Chinese rhesus macaque against progression to AIDS. Antiviral Research, 2018, 157, 9-17.	1.9	32
95	Liposomal formulation of HIF-1α inhibitor echinomycin eliminates established metastases of triple-negative breast cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 29, 102278.	1.7	32
96	Homeostatic Proliferation in the Mice with Germline FoxP3 Mutation and its Contribution to Fatal Autoimmunity. Journal of Immunology, 2008, 181, 2399-2406.	0.4	30
97	Protein aggregation of SERCA2 mutants associated with Darier disease elicits ER stress and apoptosis in keratinocytes. Journal of Cell Science, 2011, 124, 3568-3580.	1.2	30
98	Myeloid cell TRAF3 promotes metabolic inflammation, insulin resistance, and hepatic steatosis in obesity. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E460-E469.	1.8	30
99	Treatment with soluble CD24 attenuates COVID-19-associated systemic immunopathology. Journal of Hematology and Oncology, 2022, 15, 5.	6.9	30
100	Homotypic interaction of the heat-stable antigen is not responsible for its co-stimulatory activity for T cell clonal expansion. European Journal of Immunology, 1997, 27, 2524-2528.	1.6	28
101	Monte Carlo Pedigree Disequilibrium Test for Markers on the X Chromosome. American Journal of Human Genetics, 2006, 79, 567-573.	2.6	28
102	Anti–human CTLA-4 monoclonal antibody promotes T-cell expansion and immunity in a hu-PBL-SCID model: a new method for preclinical screening of costimulatory monoclonal antibodies. Blood, 2005, 105, 1114-1120.	0.6	27
103	Deletions and missense mutations of EPM2A exacerbate unfolded protein response and apoptosis of neuronal cells induced by endoplasm reticulum stress. Human Molecular Genetics, 2009, 18, 2622-2631.	1.4	27
104	Cytopenia and autoimmune diseases: A vicious cycle fueled by mTOR dysregulation in hematopoietic stem cells. Journal of Autoimmunity, 2013, 41, 182-187.	3.0	27
105	Different Lineages of P1A-Expressing Cancer Cells Use Divergent Modes of Immune Evasion for T-Cell Adoptive Therapy. Cancer Research, 2006, 66, 8241-8249.	0.4	26
106	Autoreactive T Cells Escape Clonal Deletion in the Thymus by a CD24-Dependent Pathway. Journal of Immunology, 2008, 181, 320-328.	0.4	26
107	Therapeutic targeting of TP53-mutated acute myeloid leukemia by inhibiting HIF-1α with echinomycin. Oncogene, 2020, 39, 3015-3027.	2.6	25
108	The HIF1α-PDGFD-PDGFRα axis controls glioblastoma growth at normoxia/mild-hypoxia and confers sensitivity to targeted therapy by echinomycin. Journal of Experimental and Clinical Cancer Research, 2021, 40, 278.	3.5	25

#	Article	IF	CITATIONS
109	Modulation of NKT Cell Development by B7-CD28 Interaction: An Expanding Horizon for Costimulation. PLoS ONE, 2008, 3, e2703.	1.1	24
110	Association Between Hepatitis B Viral Burden in Chronic Infection and a Functional Single Nucleotide Polymorphism of the PDCD1 Gene. Journal of Clinical Immunology, 2010, 30, 855-860.	2.0	24
111	Sialoside-based pattern recognitions discriminating infections from tissue injuries. Current Opinion in Immunology, 2011, 23, 41-45.	2.4	24
112	Signalling through FOXP3 as an X-linked tumor suppressor. International Journal of Biochemistry and Cell Biology, 2010, 42, 1784-1787.	1.2	23
113	X-linked tumor suppressors: perplexing inheritance, a unique therapeutic opportunity. Trends in Genetics, 2010, 26, 260-265.	2.9	22
114	<i>FOXP3</i> Regulates Sensitivity of Cancer Cells to Irradiation by Transcriptional Repression of <i>BRCA1</i> . Cancer Research, 2013, 73, 2170-2180.	0.4	22
115	Leukemic B Cell CTLA-4 Suppresses Costimulation of T Cells. Journal of Immunology, 2019, 202, 2806-2816.	0.4	22
116	Microsatellite instability status differentially associates with intratumoral immune microenvironment in human cancers. Briefings in Bioinformatics, 2021, 22, .	3.2	22
117	Tumor Growth Decreases NK and B Cells as well as Common Lymphoid Progenitor. PLoS ONE, 2008, 3, e3180.	1.1	22
118	Efficacy and safety of CD24Fc in hospitalised patients with COVID-19: a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Infectious Diseases, The, 2022, 22, 611-621.	4.6	22
119	B7-CTLA4 interaction promotes cognate destruction of tumor cells by cytotoxic T lymphocytes in vivo. Blood, 2002, 99, 2880-2889.	0.6	20
120	Differentiation of Monocytic Cell Clones into CD8α+ Dendritic Cells (DC) Suggests that Monocytes Can Be Direct Precursors for Both CD8α+ and CD8αâ^' DC in the Mouse. Journal of Immunology, 2003, 170, 5927-5935.	0.4	20
121	Laforin Negatively Regulates Cell Cycle Progression through Glycogen Synthase Kinase 3β-Dependent Mechanisms. Molecular and Cellular Biology, 2008, 28, 7236-7244.	1.1	20
122	Siglec genes confer resistance to systemic lupus erythematosus in humans and mice. Cellular and Molecular Immunology, 2019, 16, 154-164.	4.8	20
123	Regulation of the Stability of Heat-Stable Antigen mRNA by Interplay between Two Novel <i>cis</i> Elements in the 3′ Untranslated Region. Molecular and Cellular Biology, 1998, 18, 815-826.	1.1	19
124	Two-signal requirement for activation and effector function of natural killer cell response to allogeneic tumor cells. Blood, 2003, 102, 4456-4463.	0.6	19
125	Laforin Prevents Stress-Induced Polyglucosan Body Formation and Lafora Disease Progression in Neurons. Molecular Neurobiology, 2013, 48, 49-61.	1.9	19
126	Amplification of the CD24 Gene Is an Independent Predictor for Poor Prognosis of Breast Cancer. Frontiers in Genetics, 2019, 10, 560.	1.1	19

#	Article	IF	CITATIONS
127	B7-CD28 Interaction Promotes Proliferation and Survival but Suppresses Differentiation of CD4â^'CD8â^' T Cells in the Thymus. Journal of Immunology, 2004, 173, 2253-2261.	0.4	18
128	Laforin is required for the functional activation of malin in endoplasmic reticulum stress resistance in neuronal cells. FEBS Journal, 2012, 279, 2467-2478.	2.2	18
129	Analysis of Recombinant CD24 Glycans by MALDI-TOF-MS Reveals Prevalence of Sialyl-T Antigen. American Journal of Biomedical Sciences, 2009, 1, 1-11.	0.2	18
130	FOXP3 as an X-linked tumor suppressor. Discovery Medicine, 2010, 10, 322-8.	0.5	18
131	Laforin Confers Cancer Resistance to Energy Deprivation–Induced Apoptosis. Cancer Research, 2008, 68, 4039-4044.	0.4	15
132	CD28/B7-Mediated Co-stimulation Is Critical for Early Control of Murine Cytomegalovirus Infection. Viral Immunology, 2009, 22, 91-103.	0.6	15
133	Deletion of CD24 Impairs Development of Heat Shock Protein gp96–Driven Autoimmune Disease through Expansion of Myeloid-Derived Suppressor Cells. Journal of Immunology, 2014, 192, 5679-5686.	0.4	15
134	A hypermorphic SP1-binding CD24 variant associates with risk and progression of multiple sclerosis. American Journal of Translational Research (discontinued), 2012, 4, 347-56.	0.0	15
135	Costimulation by B7 Modulates Specificity of Cytotoxic T Lymphocytes: A Missing Link That Explains Some Bystander T Cell Activation. Journal of Experimental Medicine, 1997, 186, 1787-1791.	4.2	14
136	Cis elements for transporter associated with antigen-processing-2 transcription: two new promoters and an essential role of the IFN response factor binding element in IFN-Î ³ -mediated activation of the transcription initiator. International Immunology, 2002, 14, 189-200.	1.8	14
137	A Rare Transporter Associated with Antigen Processing Polymorphism Overpresented in HLAlow Colon Cancer Reveals the Functional Significance of the Signature Domain in Antigen Processing. Clinical Cancer Research, 2005, 11, 3614-3623.	3.2	14
138	<i>FOXP3</i> and breast cancer: implications for therapy and diagnosis. Pharmacogenomics, 2007, 8, 1485-1487.	0.6	14
139	Laforin–Malin Complex Degrades Polyglucosan Bodies in Concert with Glycogen Debranching Enzyme and Brain Isoform Glycogen Phosphorylase. Molecular Neurobiology, 2014, 49, 645-657.	1.9	14
140	An aptamer-based targeted delivery of miR-26a protects mice against chemotherapy toxicity while suppressing tumor growth. Blood Advances, 2017, 1, 1107-1119.	2.5	14
141	CD24–p53 axis suppresses diethylnitrosamine-induced hepatocellular carcinogenesis by sustaining intrahepatic macrophages. Cell Discovery, 2018, 4, 6.	3.1	14
142	<i>Streptococcus pneumoniae</i> Sialidase SpNanB-Catalyzed One-Pot Multienzyme (OPME) Synthesis of 2,7-Anhydro-Sialic Acids as Selective Sialidase Inhibitors. Journal of Organic Chemistry, 2018, 83, 10798-10804.	1.7	14
143	B7-Deficient Autoreactive T Cells Are Highly Susceptible to Suppression by CD4+CD25+ Regulatory T Cells. Journal of Immunology, 2007, 178, 1542-1552.	0.4	13
144	B7 Blockade Alters the Balance between Regulatory T Cells and Tumor-reactive T Cells for Immunotherapy of Cancer. Clinical Cancer Research, 2009, 15, 960-970.	3.2	13

#	Article	IF	CITATIONS
145	Autoimmune bone marrow environment severely inhibits B cell development by inducing extensive cell death and inhibiting proliferation. Autoimmunity, 2012, 45, 210-217.	1.2	12
146	Targeting the HIF-1α-IGFBP2 axis therapeutically reduces IGF1-AKT signaling and blocks the growth and metastasis of relapsed anaplastic Wilms tumor. Oncogene, 2021, 40, 4809-4819.	2.6	12
147	The heat stable antigen (CD24) is not required for the generation of CD4+ effector and memory T cells by dendritic cells in vivo. Immunology Letters, 2004, 94, 229-237.	1.1	11
148	CD62L is Required for the Priming of Encephalitogenic T Cells but does not Play a Major Role in the Effector Phase of Experimental Autoimmune Encephalomyelitis. Scandinavian Journal of Immunology, 2006, 64, 117-124.	1.3	11
149	Up-Regulation of HDAC4 is Associated with Schwann Cell Proliferation After Sciatic Nerve Crush. Neurochemical Research, 2014, 39, 2105-2117.	1.6	10
150	9-Azido-9-deoxy-2,3-difluorosialic Acid as a Subnanomolar Inhibitor against Bacterial Sialidases. Journal of Organic Chemistry, 2019, 84, 6697-6708.	1.7	10
151	CD24 on thymic APCs regulates negative selection of myelin antigenâ€specific T lymphocytes. European Journal of Immunology, 2012, 42, 924-935.	1.6	9
152	Study of circulating antibodies against CD25 and FOXP3 in breast cancer. Tumor Biology, 2014, 35, 3779-3783.	0.8	9
153	Mechanism- and Immune Landscape-Based Ranking of Therapeutic Responsiveness of 22 Major Human Cancers to Next Generation Anti-CTLA-4 Antibodies. Cancers, 2020, 12, 284.	1.7	9
154	Astrocytes are not susceptible to lysis by natural killer cells. Journal of Neuroimmunology, 1988, 19, 101-110.	1.1	8
155	Signaling by a New Anti-Thy 1 Monoclonal Antibody Inhibits T Cell Proliferation and Interferes with T-Cell-Mediated Induction of Costimulatory Molecule B7-2. Cellular Immunology, 1995, 165, 266-277.	1.4	8
156	On self-nonself discrimination in pattern recognition. Science China Life Sciences, 2010, 53, 169-171.	2.3	8
157	Neoantigen: A Long March toward Cancer Immunotherapy. Clinical Cancer Research, 2016, 22, 2602-2604.	3.2	8
158	Cytotoxic T lymphocyteâ€associated protein 4 antibody aggrandizes antitumor immune response of oncolytic virus <scp>M1</scp> via targeting regulatory T cells. International Journal of Cancer, 2021, 149, 1369-1384.	2.3	8
159	Alloreactive cytotoxic T cells induce DNA fragmentation in peritoneal macrophages: evidence for target cell killing by cytotoxic T cellsin vivo. European Journal of Immunology, 1989, 19, 1153-1155.	1.6	7
160	CD24Fc ameliorates immune-related adverse events while preserving anti-tumor therapeutic effect. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	7
161	Disruption of ZAS3 in Mice Alters NF-κB and AP-1 DNA Binding and T-Cell Development. Gene Expression, 2007, 14, 83-100.	0.5	6
162	<scp>CD</scp> 24 Ala57Val polymorphism is associated with spontaneous viral clearance in the <scp>HCV</scp> â€infected Chinese population. Liver International, 2015, 35, 786-794.	1.9	6

#	Article	IF	CITATIONS
163	The CD24-Siglec G axis protects mice against cuprizone-induced oligodendrocyte loss: targeting danger signal for neuroprotection. Cellular and Molecular Immunology, 2018, 15, 79-81.	4.8	6
164	Structure of CTLA-4 complexed with a pH-sensitive cancer immunotherapeutic antibody. Cell Discovery, 2020, 6, 79.	3.1	6
165	Pharmacological or genetic inhibition of hypoxia signaling attenuates oncogenic RAS-induced cancer phenotypes. DMM Disease Models and Mechanisms, 2022, 15, .	1.2	6
166	Monoclonal Antibodies Against T Cell Receptor/CD3 Complex Induce Cell Death of Th1 Clones in the Absence of Accessory Cells. Advances in Experimental Medicine and Biology, 1991, 292, 105-113.	0.8	6
167	Selective elimination of autoreactive T cells in vivo by the regulatory T cells. Clinical Immunology, 2009, 130, 61-73.	1.4	5
168	A population of innate myelolymphoblastoid effector cell expanded by inactivation of mTOR complex 1 in mice. ELife, 2017, 6, .	2.8	5
169	Trap1a is an X-linked and cell-intrinsic regulator of thymocyte development. Cellular and Molecular Immunology, 2017, 14, 685-692.	4.8	4
170	Immune competence of cancer-reactive T cells generated de novo in adult tumor-bearing mice. Blood, 2007, 109, 253-258.	0.6	2
171	FOXP3 Is an X-Linked Breast Cancer Suppressor Gene and an Important Repressor of the HER-2/ErbB2 Oncogene. Cell, 2008, 134, 546.	13.5	2
172	Transgenic Expression of P1A Induced Thymic Tumor: A Role for Onco-Fetal Antigens in Tumorigenesis. PLoS ONE, 2010, 5, e13439.	1.1	2
173	The development and functions of CD4+ T cells expressing a transgenic TCR specific for an MHC-I-restricted tumor antigenic epitope. Cellular and Molecular Immunology, 2011, 8, 333-340.	4.8	2
174	A novel aptamer-based small RNA delivery platform and its application to cancer therapy. Genes and Diseases, 2023, 10, 1075-1089.	1.5	2
175	Co-stimulatory molecules B7-1 and B7-2 as experimental therapeutic targets. Expert Opinion on Therapeutic Targets, 1999, 3, 93-108.	1.0	1
176	A new role for CD28 in the survival of autoreactive T cells in the periphery after chronic exposure to autoantigen. International Immunology, 2004, 16, 1403-1409.	1.8	1
177	CD24 in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis: Targeting Redundancy for Immunotherapy?. Current Immunology Reviews, 2005, 1, 173-176.	1.2	1
178	Mammalian target of rapamycin activation underlies HSC defects in autoimmune disease and inflammation in mice. Journal of Clinical Investigation, 2010, 120, 4583-4583.	3.9	1
179	FoxP3: a life beyond regulatory T cells. International Journal of Clinical and Experimental Pathology, 2009, 2, 205-10.	0.5	1
180	Why Are Mice with Targeted Mutation of Coâ€Stimulatory Molecules Prone to Autoimmune Disease?. Annals of the New York Academy of Sciences, 2003, 987, 307-308.	1.8	0

#	Article	IF	CITATIONS
181	Harnessing the regulatory feedback to T cells to enhance antitumor immune responses. Drug Discovery Today: Therapeutic Strategies, 2006, 3, 31-34.	0.5	0
182	Siglec-G Expression on Donor T Cells Controls Severity of GVHD. Biology of Blood and Marrow Transplantation, 2015, 21, S60-S61.	2.0	0
183	Donor T Cells Intrinsic Responses to DAMPs Regulated By Siglec-G-CD24 Axis Mitigate GVHD but Maintain GVL in Experimental Allogeneic Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2016, 22, S57-S58.	2.0	0
184	A Di-nucleotide Deletion in CD24 Confers Protection against Autoimmune Diseases. PLoS Genetics, 2005, preprint, e49.	1.5	0
185	TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. Journal of Cell Biology, 2008, 183, i1-i1.	2.3	0
186	Activation-Induced Cell Death of Effector T Cells: A Third Mechanism of Immune Tolerance. , 1993, , 159-164.		0
187	Abstract B21: An mTORC1-Mdm2-Drosha axis for miRNA biogenesis in response to glucose- and amino acid-deprivation. , 2016, , .		0