
Baochun Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6913598/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 2015, 43, 477-507.	11.0	931
2	A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens. Gondwana Research, 2010, 18, 253-273.	6.0	814
3	End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia. International Journal of Earth Sciences, 2009, 98, 1189-1217.	1.8	794
4	Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea. Earth-Science Reviews, 2018, 186, 262-286.	9.1	576
5	Paleomagnetic constraints on the paleogeography of the East Asian blocks during Late Paleozoic and Early Mesozoic times. Earth-Science Reviews, 2018, 186, 8-36.	9.1	231
6	Assessment of heavy metal pollution from a Fe-smelting plant in urban river sediments using environmental magnetic and geochemical methods. Environmental Pollution, 2011, 159, 3057-3070.	7.5	214
7	Magnetostratigraphic study of the Kuche Depression, Tarim Basin, and Cenozoic uplift of the Tian Shan Range, Western China. Earth and Planetary Science Letters, 2006, 251, 346-364.	4.4	183
8	New constraints to the onset of the India–Asia collision: Paleomagnetic reconnaissance on the Linzizong Group in the Lhasa Block, China. Tectonophysics, 2010, 489, 189-209.	2.2	131
9	Discriminating sources of anthropogenic heavy metals in urban street dusts using magnetic and chemical methods. Journal of Geochemical Exploration, 2012, 119-120, 60-75.	3.2	121
10	Magnetostratigraphic constraints on the Gondwanan origin of North China: Cambrian/Ordovician boundary results. Geophysical Journal International, 2002, 151, 1-10.	2.4	109
11	Paleomagnetism of the Baiyisi volcanic rocks (ca. 740Ma) of Tarim, Northwest China: A continental fragment of Neoproterozoic Western Australia?. Precambrian Research, 2005, 142, 83-92.	2.7	107
12	Early Paleozoic paleomagnetic poles from the western part of the North China Block and their implications. Tectonophysics, 1999, 308, 377-402.	2.2	76
13	Paleomagnetic study of Late Paleozoic rocks in the Tacheng Basin of West Junggar (NW China): Implications for the tectonic evolution of the western Altaids. Gondwana Research, 2015, 27, 862-877.	6.0	72
14	The Early Paleozoic paleogeography of the North China block and the other major blocks of China. Science Bulletin, 2000, 45, 1057-1065.	1.7	61
15	Anisotropy of magnetic susceptibility of Eocene and Miocene sediments in the Qaidam Basin, Northwest China: Implication for Cenozoic tectonic transition and depocenter migration. Geochemistry, Geophysics, Geosystems, 2014, 15, 2095-2108.	2.5	56
16	Magnetic properties of high-road-side pine tree leaves in Beijing and their environmental significance. Science Bulletin, 2006, 51, 3041-3052.	1.7	55
17	Biomonitoring of atmospheric particulate matter using magnetic properties of Salix matsudana tree ring cores. Science of the Total Environment, 2008, 393, 177-190.	8.0	54
18	Paleomagnetic and geochronological constraints on the post-collisional northward convergence of the southwest Tian Shan, NW China. Tectonophysics, 2005, 409, 107-124.	2.2	50

#	Article	IF	CITATIONS
19	Late Cenozoic magnetochronology and paleoenvironmental changes in the northern foreland basin of the Tian Shan Mountains. Journal of Geophysical Research, 2007, 112, .	3.3	50
20	Paleomagnetism of ca. 1.35Ga sills in northern North China Craton and implications for paleogeographic reconstruction of the Mesoproterozoic supercontinent. Precambrian Research, 2013, 228, 36-47.	2.7	49
21	Paleomagnetism of Eocene and Miocene sediments from the Qaidam basin: Implication for no integral rotation since the Eocene and a rigid Qaidam block. Geochemistry, Geophysics, Geosystems, 2014, 15, 2109-2127.	2.5	47
22	Paleomagnetism of Carboniferous sediments in the Hexi corridor: its origin and tectonic implications. Earth and Planetary Science Letters, 2001, 194, 135-149.	4.4	42
23	Palaeomagnetism of Precambrian dyke swarms in the North China Shield: The â^¼1.8Ga LIP event and crustal consolidation in late Palaeoproterozoic times. Journal of Asian Earth Sciences, 2011, 41, 504-524.	2.3	41
24	A quasi-linear structure of the southern margin of Eurasia prior to the India-Asia collision: First paleomagnetic constraints from Upper Cretaceous volcanic rocks near the western syntaxis of Tibet. Tectonics, 2015, 34, 1431-1451.	2.8	39
25	Large southward motion and clockwise rotation of Indochina throughout the Mesozoic: Paleomagnetic and detrital zircon U–Pb geochronological constraints. Earth and Planetary Science Letters, 2017, 459, 264-278.	4.4	38
26	Evaluating the environmental quality impact of the 2008 Beijing Olympic Games: magnetic monitoring of street dust in Beijing Olympic Park. Geophysical Journal International, 2011, 187, 1222-1236.	2.4	37
27	Anisotropy of magnetic susceptibility of the Jingou River section: Implications for late Cenozoic uplift of the Tian Shan. Geochemistry, Geophysics, Geosystems, 2012, 13, .	2.5	36
28	Assessment of heavy metal contamination of dustfall in northern China from integrated chemical and magnetic investigation. Atmospheric Environment, 2013, 74, 182-193.	4.1	36
29	Paleomagnetic and 40Ar/39Ar geochronological results from the Linzizong Group, Linzhou Basin, Lhasa Terrane, Tibet: Implications to Paleogene paleolatitude and onset of the India–Asia collision. Journal of Asian Earth Sciences, 2014, 96, 162-177.	2.3	35
30	New Silurian and Devonian palaeomagnetic results from the Hexi Corridor terrane, northwest China, and their tectonic implications. Geophysical Journal International, 2000, 140, 132-146.	2.4	34
31	Late Triassic paleomagnetic result from the Baoshan Terrane, West Yunnan of China: Implication for orientation of the East Paleotethys suture zone and timing of the Sibumasu-Indochina collision. Journal of Asian Earth Sciences, 2015, 111, 350-364.	2.3	34
32	Magnetostratigraphic and rock magnetic study of the Neogene upper Yaha section, Kuche Depression (Tarim Basin): Implications to formation of the Xiyu conglomerate formation, NW China. Journal of Geophysical Research, 2010, 115, .	3.3	32
33	Palaeomagnetic study of the KepezdaÄŸ and YamadaÄŸ volcanic complexes, central Turkey: Neogene tectonic escape and block definition in the central-east Anatolides. Journal of Geodynamics, 2011, 51, 308-326.	1.6	29
34	Permian Paleogeography of the Eastern CAOB: Paleomagnetic Constraints From Volcanic Rocks in Central Eastern Inner Mongolia, NE China. Journal of Geophysical Research: Solid Earth, 2018, 123, 2559-2582.	3.4	29
35	Paleomagnetism of Miocene sediments from the Turfan Basin, Northwest China: no significant vertical-axis rotation during Neotectonic compression within the Tian Shan Range, Central Asia. Tectonophysics, 2004, 384, 1-21.	2.2	26
36	53–43ÂMa Deformation of Eastern Tibet Revealed by Three Stages of Tectonic Rotation in the Gongjue Basin. Journal of Geophysical Research: Solid Earth, 2018, 123, 3320-3338.	3.4	26

#	Article	IF	CITATIONS
37	Paleomagnetism of early Paleogene marine sediments in southern Tibet, China: Implications to onset of the India–Asia collision and size of Greater India. Earth and Planetary Science Letters, 2011, , .	4.4	25
38	Details of Magnetic Polarity Transition Recorded in Chinese Loess Journal of Geomagnetism and Geoelectricity, 1993, 45, 289-299.	0.9	23
39	Constraints on the Jurassic swing of the apparent polar wander path for the North China Block. Geophysical Journal International, 2003, 154, 801-810.	2.4	23
40	Palaeomagnetic investigation on Early-Middle Triassic sediments of the North China block: a new Early Triassic palaeopole and its tectonic implications. Geophysical Journal International, 2004, 160, 101-113.	2.4	23
41	Paleomagnetic Study on the Permian Rocks of the Indochina Block and Its Implications for Paleogeographic Configuration and Northward Drifting of Cathaysialand in the Paleoâ€Tethys. Journal of Geophysical Research: Solid Earth, 2018, 123, 4523-4538.	3.4	22
42	Neogene magnetostratigraphy and rock magnetic study of the Kashi Depression, NW China: Implications to neotectonics in the SW Tianshan Mountains. Journal of Geophysical Research: Solid Earth, 2016, 121, 1280-1296.	3.4	21
43	Late Cenozoic evolution in the Pamir-Tian Shan convergence: New chronological constraints from the magnetostratigraphic record of the southwestern Tianshan foreland basin (Ulugqat area). Tectonophysics, 2017, 717, 51-64.	2.2	21
44	New paleomagnetic results for Ordovician and Silurian rocks of the Tarim Block, Northwest China and their paleogeographic implications. Tectonophysics, 2019, 755, 91-108.	2.2	21
45	Direct Paleomagnetic Constraint on the Closure of Paleoâ€Tethys and Its Implications for Linking the Tibetan and Southeast Asian Blocks. Geophysical Research Letters, 2019, 46, 14368-14376.	4.0	21
46	Paleomagnetism of Cretaceous rocks in the Jiaodong Peninsula, eastern China: Insight into block rotations and neotectonic deformation in eastern Asia. Journal of Geophysical Research, 2007, 112, .	3.3	20
47	Paleomagnetic Constraints of the Lower Triassic Strata in South Qinling Belt: Evidence for a Discrete Terrane Between the North and South China Blocks. Tectonics, 2020, 39, e2019TC005698.	2.8	20
48	A high-resolution geochemical record from the Kuche depression: Constraints on early Miocene uplift of South Tian Shan. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 446, 1-10.	2.3	18
49	Paleomagnetic constraints on the tectonic relationship between the Alashan/Hexi Corridor Terrane and the North China Block. Geophysical Research Letters, 1999, 26, 787-790.	4.0	17
50	Paleomagnetic constraints on neotectonic deformation in the Kashi depression of the western Tarim Basin, NW China. International Journal of Earth Sciences, 2009, 98, 1469-1488.	1.8	17
51	Comment on "Remagnetization of the Paleogene Tibetan Himalayan carbonate rocks in the Gamba area: Implications for reconstructing the lower plate in the Indiaâ€Asia collision―by Huang et al Journal of Geophysical Research: Solid Earth, 2017, 122, 4852-4858.	3.4	16
52	Origin of the Red Earth sequence on the northeastern Tibetan Plateau and its implications for regional aridity since the middle Miocene. Science in China Series D: Earth Sciences, 2006, 49, 505-517.	0.9	15
53	Quantifying the Extent of the Paleoâ€Asian Ocean During the Late Carboniferous to Early Permian. Geophysical Research Letters, 2021, 48, e2021GL094498.	4.0	14
54	Magnetostratigraphic study of Cretaceous depositional succession in the northern Kuqa Depression, Northwest China. Science Bulletin, 2006, 51, 97-107.	1.7	12

#	Article	IF	CITATIONS
55	Detrital remanent magnetization of single-crystal silicates with magnetic inclusions: constraints from deposition experiments. Geophysical Journal International, 2020, 224, 2001-2015.	2.4	11
56	Paleomagnetic and geochronological study of the Halaqiaola basalts, southern margin of the Altai Mountains, northern Xinjiang: Constraints on neotectonic convergent patterns north of Tibet. Journal of Geophysical Research, 2006, 111, .	3.3	10
57	The characteristics of environmental particulate matter in the urban area of Beijing, China, during the 2008 Olympic Games. Atmospheric Pollution Research, 2017, 8, 141-148.	3.8	10
58	Paleomagnetic results from Lower Devonian sandstones of the Niqiuhe Formation in the Duobaoshan area and its constraints on paleoposition of the Xing'an block. Chinese Science Bulletin, 2018, 63, 1502-1514.	0.7	10
59	New paleomagnetic positive proof of the rigid or quasi-rigid Greater Indian Plate during the Early Cretaceous. Chinese Science Bulletin, 2019, 64, 2225-2244.	0.7	10
60	New paleomagnetic and magnetic fabric results for Early Cretaceous rocks from the Turpan intramontane basin, east Tianshan, northwest China. Science in China Series D: Earth Sciences, 2004, 47, 540-550.	0.9	8
61	Paleomagnetic study on orogenic belt: An example from Early Cretaceous volcanic rocks, Inner Mongolia, China. Science in China Series D: Earth Sciences, 2004, 47, 1127-1133.	0.9	8
62	Paleomagnetic Constraint on the Carboniferous Paleoposition of Indochina and Its Implications for the Evolution of Eastern Paleoâ€Tethys Ocean. Tectonics, 2020, 39, e2020TC006168.	2.8	8
63	Paleomagnetic study on the Early Triassic red beds from Jiaocheng, Shanxi Province. Science in China Series D: Earth Sciences, 2004, 47, 108.	0.9	7
64	A palaeomagnetic study of the Middle Permian and Middle Triassic limestones from Shan State, Myanmar: Implications for collision of the Sibumasu Terrane and Indochina Terrane. Geological Journal, 2020, 55, 1179-1194.	1.3	7
65	Microâ€Blocks in NE Asia Amalgamated Into the Unified Amuria Block by â^¼300ÂMa: First Paleomagnetic Evidence From the Songliao Block, NE China. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022881.	3.4	7
66	Addendum to "Late Cenozoic magnetochronology and paleoenvironmental changes in the northern foreland basin of the Tian Shan Mountains―by Jimin Sun, Qinghai Xu, and Baochun Huang. Journal of Geophysical Research, 2008, 113, .	3.3	6
67	Reply to the comment by J. Charreau et al. on "Magnetostratigraphic study of the Kuche Depression, Tarim Basin, and Cenozoic uplift of the Tian Shan Range, Western China―[Earth Planet. Sci. Lett., 2008, doi:10.1016/j.epsl.2008.01.025]. Earth and Planetary Science Letters, 2008, 275, 404-406.	4.4	6
68	The influence of Cretaceous paleolatitude variation of the Tethyan Himalaya on the India-Asia collision pattern. Science China Earth Sciences, 2017, 60, 1057-1066.	5.2	6
69	Cenozoic deformation in the Tethyan Himalaya, SE Tibet: Insights from magnetic fabrics and structural analysis of Upper Triassic flysch. Tectonophysics, 2021, 814, 228967.	2.2	6
70	Magnetic enhancement upon heating of environmentally polluted samples containing haematite and iron. Geophysical Journal International, 2010, , no-no.	2.4	5
71	New Early and Late Carboniferous paleomagnetic results from the Qaidam Block, NW China: Implications for the paleogeography of Central Asia. Tectonophysics, 2017, 717, 242-252.	2.2	5
72	Palaeomagnetism of Late Triassic volcanic rocks from the western margin of Khorat Basin, Thailand and its implication for ambiguous inclination shallowing in Mesozoic sediments of Indochina. Geophysical Journal International, 2019, 219, 897-910.	2.4	5

#	Article	IF	CITATIONS
73	Multi-stage India-Asia collision: Paleomagnetic constraints from Hazara-Kashmir syntaxis in the western Himalaya. Bulletin of the Geological Society of America, 0, , .	3.3	5
74	Magnetic fabric constraint on tectonic setting of Paleoproterozoic dyke swarms in the North China Craton, China. Precambrian Research, 2019, 329, 247-261.	2.7	5
75	High-Resolution Petrographic Evidence Confirming Detrital and Biogenic Magnetites as Remanence Carriers for Zongpu Carbonates in the Gamba Area, South Tibet. Frontiers in Earth Science, 2021, 9, .	1.8	5
76	Paleomagnetic result of the Cenozoic volcanic rocks from the Tuoyun Basin, southwest Tien Shan of China and its tectonic implications. Science Bulletin, 2004, 49, 1288.	1.7	4
77	Paleomagnetic Evidence for Tectonic Setting of Paleoproterozoic Dyke Swarms in the North China Craton, China. Acta Geologica Sinica, 2016, 90, 35-35.	1.4	4
78	Comment on "Paleomagnetism of the Late Cretaceous Red Beds From the Far Western Lhasa Terrane: Inclination Discrepancy and Tectonic Implications―by Bian etÂal Tectonics, 2021, 40, e2020TC006520.	2.8	4
79	Distribution of apparent magnetization for Asia. Science in China Series D: Earth Sciences, 2000, 43, 654-660.	0.9	3
80	Paleomagnetism of early Paleozoic volcanic rocks from the Beishan area, Gansu of northwest China: Preliminary insight into early Paleozoic kinemics of the Beishan terrane. Science Bulletin, 2002, 47, 1561.	1.7	2
81	Remagnetization of Jutal dykes in Gilgit area of the Kohistan Island Arc: Perspectives from the India–Asia collision. Geophysical Journal International, 2021, 226, 33-46.	2.4	2
82	Comment on "Cenozoic tectonic deformation and uplift of the South Tian Shan: Implications from magnetostratigraphy and balanced cross-section restoration of the Kuqa depression―by Tao Zhang, Xiaomin Fang, Chunhui Song, Erwin Appel, and Yadong Wang [Tectonophysics, 2014, doi:10.1016/j.tecto.2014.04.044]. Tectonophysics, 2016, 690, 362-366.	2.2	1
83	Neotectonic Deformation in the Southwestern Tian Shan, Western China: Evidence From Paleomagnetic Study of Quaternary Sediments From the Mingyaole Anticline. Tectonics, 2019, 38, 2540-2554.	2.8	1
84	The Middle–Late Triassic Closure of the East Paleotethys Ocean: Paleomagnetic Evidence from the Baoshan Terrane, China. Acta Geologica Sinica, 2019, 93, 1978-1979.	1.4	1
85	China and Mongolia—Precambrian-Paleozoic. , 2021, , 494-508.		1

86 åŽåŒ—地åŒ⁰å∰æ°"é™å°~å'Œåœ°èj¨åœŸå£₱£å¦ç‰¹å¾åŠæ±j染æ¥æ⁰• Chinese Science Bulletin, 2014, 59, 1748-1760.0

	A REMAINING OPEN PALEOGEOGRAPHY OF PALEO-ASIAN OCEAN BY EARLY PERMIAN: PALEOMAGNETIC			
87	CONSTRAINTS FROM THE PERMIAN VOLCANIC ROCKS IN MIDDLE-EAST INNER MONGOLIA, NE CHINA. Geodinamika LTektonofizika, 2017, 8, 603-604.	0.7	0	