Luca De Stefano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6913528/publications.pdf

Version: 2024-02-01

250 papers

5,552 citations

43 h-index 60 g-index

256 all docs

256 docs citations

256 times ranked

4909 citing authors

#	Article	IF	Citations
1	Photonic band gaps analysis of Thue-Morse multilayers made of porous silicon. Optics Express, 2006, 14, 6264.	3.4	125
2	Marine diatoms as optical chemical sensors. Applied Physics Letters, 2005, 87, 233902.	3.3	118
3	In-Vivo Real-Time Control of Protein Expression from Endogenous and Synthetic Gene Networks. PLoS Computational Biology, 2014, 10, e1003625.	3.2	114
4	Lensless light focusing with the centric marine diatom Coscinodiscus walesii. Optics Express, 2007, 15, 18082.	3.4	113
5	DNA Optical Detection Based on Porous Silicon Technology: from Biosensors to Biochips. Sensors, 2007, 7, 214-221.	3.8	109
6	Marine diatoms as optical biosensors. Biosensors and Bioelectronics, 2009, 24, 1580-1584.	10.1	106
7	Polymeric microneedles based enzymatic electrodes for electrochemical biosensing of glucose and lactic acid. Sensors and Actuators B: Chemical, 2016, 236, 343-349.	7.8	91
8	Diatomite biosilica nanocarriers for siRNA transport inside cancer cells. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 3393-3403.	2.4	88
9	The Gasâ€Detection Properties of Lightâ€Emitting Diatoms. Advanced Functional Materials, 2008, 18, 1257-1264.	14.9	87
10	Optical Properties of Diatom Nanostructured Biosilica in Arachnoidiscus sp: Micro-Optics from Mother Nature. PLoS ONE, 2014, 9, e103750.	2.5	82
11	Surface bioengineering of diatomite based nanovectors for efficient intracellular uptake and drug delivery. Nanoscale, 2015, 7, 20063-20074.	5.6	81
12	Nano-biosilica from marine diatoms: A brand new material for photonic applications. Superlattices and Microstructures, 2009, 46, 84-89.	3.1	80
13	A Mechanochemical Approach to Porous Silicon Nanoparticles Fabrication. Materials, 2011, 4, 1023-1033.	2.9	80
14	Diatomite silica nanoparticles for drug delivery. Nanoscale Research Letters, 2014, 9, 329.	5.7	80
15	Treatment and recycling of asbestos-cement containing waste. Journal of Hazardous Materials, 2011, 195, 391-397.	12.4	79
16	Multi-wavelength study of light transmitted through a single marine centric diatom. Optics Express, 2010, 18, 12203.	3.4	76
17	Interfacing the nanostructured biosilica microshells of the marine diatom Coscinodiscus wailesii with biological matter. Acta Biomaterialia, 2008, 4, 126-130.	8.3	73
18	Smart optical sensors for chemical substances based on porous silicon technology. Applied Optics, 2004, 43, 167.	2.1	70

#	Article	IF	Citations
19	Colorimetric Immunosensor by Aggregation of Photochemically Functionalized Gold Nanoparticles. ACS Omega, 2018, 3, 3805-3812.	3.5	67
20	Electronic properties of TiO ₂ -based materials characterized by high Ti ³⁺ self-doping and low recombination rate of electron–hole pairs. RSC Advances, 2017, 7, 2373-2381.	3.6	66
21	Diatoms Green Nanotechnology for Biosilica-Based Drug Delivery Systems. Pharmaceutics, 2018, 10, 242.	4.5	66
22	Periodic versus aperiodic: Enhancing the sensitivity of porous silicon based optical sensors. Applied Physics Letters, 2007, 90, 191112.	3.3	62
23	A Photolithographic Approach to Polymeric Microneedles Array Fabrication. Materials, 2015, 8, 8661-8673.	2.9	61
24	Optical Sensors for Vapors, Liquids, and Biological Molecules Based on Porous Silicon Technology. IEEE Nanotechnology Magazine, 2004, 3, 49-54.	2.0	60
25	Aminosilane functionalizations of mesoporous oxidized silicon for oligonucleotide synthesis and detection. Journal of the Royal Society Interface, 2013, 10, 20130160.	3.4	60
26	Optical sensing of flammable substances using porous silicon microcavities. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 100, 271-274.	3.5	58
27	Highly sensitive optochemical gas detection by luminescent marine diatoms. Applied Physics Letters, 2007, 91, 051921.	3.3	56
28	Porous silicon-based optical microsensor for the detection of l-glutamine. Biosensors and Bioelectronics, 2006, 21, 1664-1667.	10.1	55
29	Porous silicon-based optical biosensors and biochips. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 38, 188-192.	2.7	55
30	Porous Silicon Optical Devices: Recent Advances in Biosensing Applications. Sensors, 2021, 21, 1336.	3.8	55
31	Nanostructures in Diatom Frustules: Functional Morphology of Valvocopulae in Cocconeidacean Monoraphid Taxa. Journal of Nanoscience and Nanotechnology, 2005, 5, 15-24.	0.9	54
32	Optical characterization of aminosilane-modified silicon dioxide surface for biosensing. Journal of the European Optical Society-Rapid Publications, 0, 8, .	1.9	54
33	A porous silicon-based Bragg grating waveguide sensor for chemical monitoring. Sensors and Actuators B: Chemical, 2009, 139, 39-43.	7.8	53
34	Morphological, Structural, and Charge Transfer Properties of F-Doped ZnO: A Spectroscopic Investigation. Journal of Physical Chemistry C, 2017, 121, 16012-16020.	3.1	51
35	Solid state dehalogenation of PCBs in contaminated soil using NaBH4. Waste Management, 2003, 23, 315-319.	7.4	49
36	Optical microsensors for pesticides identification based on porous silicon technology. Biosensors and Bioelectronics, 2005, 20, 2136-2139.	10.1	49

#	Article	IF	Citations
37	Porous silicon-based optical biochips. Journal of Optics, 2006, 8, S540-S544.	1.5	49
38	Porous Silicon Based Resonant Mirrors for Biochemical Sensing. Sensors, 2008, 8, 6549-6556.	3.8	49
39	Fabrication and characterization of a porous silicon based microarray for label-free optical monitoring of biomolecular interactions. Journal of Applied Physics, 2010, 107, .	2.5	49
40	Synthetic vs Natural: Diatoms Bioderived Porous Materials for the Next Generation of Healthcare Nanodevices. Advanced Healthcare Materials, 2017, 6, 1601125.	7.6	47
41	Porous silicon microcavities for optical hydrocarbons detection. Sensors and Actuators A: Physical, 2003, 104, 179-182.	4.1	46
42	Glutamine-Binding Protein fromEscherichiacoliSpecifically Binds a Wheat Gliadin Peptide Allowing the Design of a New Porous Silicon-Based Optical Biosensorâ€. Journal of Proteome Research, 2006, 5, 1241-1245.	3.7	46
43	Shedding light on diatom photonics by means of digital holography. Journal of Biophotonics, 2014, 7, 341-350.	2.3	46
44	Time-resolved sensing of chemical species in porous silicon optical microcavity. Sensors and Actuators B: Chemical, 2004, 100, 168-172.	7.8	44
45	Hybrid polymer-porous silicon photonic crystals for optical sensing. Journal of Applied Physics, 2009, 106, .	2.5	44
46	Microneedles-based electrochemical sensors: New tools for advanced biosensing. Current Opinion in Electrochemistry, 2019, 17, 121-127.	4.8	44
47	Self-Assembled Biofilm of Hydrophobins Protects the Silicon Surface in the KOH Wet Etch Process. Langmuir, 2007, 23, 7920-7922.	3.5	43
48	Internalization kinetics and cytoplasmic localization of functionalized diatomite nanoparticles in cancer cells by Raman imaging. Journal of Biophotonics, 2018, 11, e201700207.	2.3	41
49	Proteinâ€Modified Porous Silicon Nanostructures. Advanced Materials, 2008, 20, 1529-1533.	21.0	40
50	A microfluidics assisted porous silicon array for optical label-free biochemical sensing. Biomicrofluidics, 2011, 5, 34120-3412010.	2.4	40
51	The Pleurotus ostreatus hydrophobin Vmh2 and its interaction with glucans. Glycobiology, 2010, 20, 594-602.	2.5	39
52	Solid phase synthesis of a thrombin binding aptamer on macroporous silica for label free optical quantification of thrombin. RSC Advances, 2016, 6, 86762-86769.	3.6	39
53	Nanostructured Biosilica of Diatoms: From Water World to Biomedical Applications. Applied Sciences (Switzerland), 2020, 10, 6811.	2.5	39
54	Nematic Liquid Crystal Optical Dispersion in the Visible-Near Infrared Range. Molecular Crystals and Liquid Crystals, 2006, 454, 263/[665]-271/[673].	0.9	38

#	Article	IF	CITATIONS
55	Chemical modification of TiO2 nanotube arrays for label-free optical biosensing applications. Applied Surface Science, 2017, 419, 235-240.	6.1	38
56	F-doped ZnO nano- and meso-crystals with enhanced photocatalytic activity in diclofenac degradation. Science of the Total Environment, 2021, 762, 143066.	8.0	37
57	Marine diatoms as optical chemical sensors: A time-resolved study. Sensors and Actuators B: Chemical, 2008, 130, 396-399.	7.8	36
58	Biologically enabled sub-diffractive focusing. Optics Express, 2014, 22, 27214.	3.4	36
59	A Microsystem Based on Porous Silicon-Glass Anodic Bonding for Gas and Liquid Optical Sensing. Sensors, 2006, 6, 680-687.	3.8	35
60	One-Shot Fabrication of Polymeric Hollow Microneedles by Standard Photolithography. Polymers, 2021, 13, 520.	4.5	34
61	Extending the Shelf-Life of Meat and Dairy Products via PET-Modified Packaging Activated With the Antimicrobial Peptide MTP1. Frontiers in Microbiology, 2019, 10, 2963.	3.5	33
62	Pesticides detection in water and humic solutions using porous silicon technology. Sensors and Actuators B: Chemical, 2005, 111-112, 522-525.	7.8	32
63	Environmental Conditions Modulate the Switch among Different States of the Hydrophobin Vmh2 from Pleurotus ostreatus. Biomacromolecules, 2012, 13, 743-750.	5.4	32
64	Bioengineered Silicon Diatoms: Adding Photonic Features to a Nanostructured Semiconductive Material for Biomolecular Sensing. Nanoscale Research Letters, 2016, 11, 405.	5.7	32
65	Functionalized Polymeric Materials with Bio-Derived Antimicrobial Peptides for "Active―Packaging. International Journal of Molecular Sciences, 2019, 20, 601.	4.1	32
66	SERS Quantification of Galunisertib Delivery in Colorectal Cancer Cells by Plasmonicâ€Assisted Diatomite Nanoparticles. Small, 2021, 17, e2101711.	10.0	32
67	Functional morphology of micro- and nanostructures in two distinct diatom frustules. Superlattices and Microstructures, 2009, 46, 64-68.	3.1	31
68	Diffuse Reflectance Infrared Fourier Transform Spectroscopy for the Determination of Asbestos Species in Bulk Building Materials. Materials, 2014, 7, 457-470.	2.9	31
69	Oligopeptide–heavy metal interaction monitoring by hybrid gold nanoparticle based assay. Analyst, The, 2015, 140, 149-155.	3.5	31
70	Electroless Gold-Modified Diatoms as Surface-Enhanced Raman Scattering Supports. Nanoscale Research Letters, 2016, 11, 315.	5.7	31
71	Optically monitored drug delivery patch based on porous silicon and polymer microneedles. Biomedical Optics Express, 2016, 7, 1645.	2.9	31
72	Small Synthetic Peptides Bioconjugated to Hybrid Gold Nanoparticles Destroy Potentially Deadly Bacteria at Submicromolar Concentrations. Bioconjugate Chemistry, 2018, 29, 3877-3885.	3.6	31

#	Article	IF	CITATIONS
73	Unraveling the Charge State of Oxygen Vacancies in ZrO _{2â€"<i>x</i>} on the Basis of Synergistic Computational and Experimental Evidence. Journal of Physical Chemistry C, 2019, 123, 11581-11590.	3.1	31
74	Recent Advances in the Fabrication and Functionalization of Flexible Optical Biosensors: Toward Smart Life-Sciences Applications. Biosensors, 2021, 11, 107.	4.7	31
75	Integrated silicon-glass opto-chemical sensors for lab-on-chip applications. Sensors and Actuators B: Chemical, 2006, 114, 625-630.	7.8	29
76	Optical characterization of liquid crystals by combined ellipsometry and half-leaky-guided-mode spectroscopy in the visible-near infrared range. Journal of Applied Physics, 2007, 101, 073105.	2.5	29
77	Versatile synthesis of ZnO nanowires for quantitative optical sensing of molecular biorecognition. Sensors and Actuators B: Chemical, 2015, 220, 705-711.	7.8	29
78	Class I Hydrophobin Vmh2 Adopts Atypical Mechanisms to Self-Assemble into Functional Amyloid Fibrils. Biomacromolecules, 2016, 17, 954-964.	5.4	29
79	Gold decorated porous biosilica nanodevices for advanced medicine. Nanotechnology, 2018, 29, 235601.	2.6	29
80	Bioactive modification of silicon surface using self-assembled hydrophobins from Pleurotus ostreatus. European Physical Journal E, 2009, 30, 181-5.	1.6	28
81	Rapid and ultrasensitive detection of active thrombin based on the Vmh2 hydrophobin fused to a Green Fluorescent Protein. Biosensors and Bioelectronics, 2017, 87, 816-822.	10.1	28
82	Langmuirâ-'Blodgett Film of Hydrophobin Protein from Pleurotus ostreatus at the Airâ-'Water Interface. Langmuir, 2008, 24, 12953-12957.	3.5	26
83	Quantitative analysis of capillary condensation in fractal-like porous silicon nanostructures. Journal of Applied Physics, 2007, 101, 024309.	2.5	25
84	Porous Silicon-Based Aptasensors: The Next Generation of Label-Free Devices for Health Monitoring. Molecules, 2019, 24, 2216.	3.8	25
85	Photocatalytic hydrogen evolution by co-catalyst-free TiO ₂ /C bulk heterostructures synthesized under mild conditions. RSC Advances, 2020, 10, 12519-12534.	3.6	25
86	Preparation of activated carbons from heavy-oil fly ashes. Waste Management, 2003, 23, 345-351.	7.4	24
87	Photoluminescence of Graphene Oxide Infiltrated into Mesoporous Silicon. Journal of Physical Chemistry C, 2014, 118, 27301-27307.	3.1	24
88	Selfâ€Assembly of Gâ€Rich Oligonucleotides Incorporating a 3′–3′ Inversion of Polarity Site: A New Route Towards Gâ€Wire DNA Nanostructures. ChemistryOpen, 2017, 6, 599-605.	1.9	24
89	Optical trapping of porous silicon nanoparticles. Nanotechnology, 2011, 22, 505704.	2.6	23
90	A natural source of porous biosilica for nanotech applications: the diatoms microalgae. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 1820-1825.	0.8	23

#	Article	IF	Citations
91	Hydrophobin-coated plates as matrix-assisted laser desorption/ionization sample support for peptide/protein analysis. Analytical Biochemistry, 2014, 449, 9-16.	2.4	23
92	The amphiphilic hydrophobin Vmh2 plays a key role in one step synthesis of hybrid protein–gold nanoparticles. Colloids and Surfaces B: Biointerfaces, 2015, 136, 214-221.	5.0	23
93	Plasmonic Nanosensors: Design, Fabrication, and Applications in Biomedicine. Chemosensors, 2022, 10, 150.	3.6	23
94	Arsenate reductase from <i>Thermus thermophilus</i> conjugated to polyethylene glycol-stabilized gold nanospheres allow trace sensing and speciation of arsenic ions. Journal of the Royal Society Interface, 2016, 13, 20160629.	3.4	22
95	Polymeric Microneedle Arrays: Versatile Tools for an Innovative Approach to Drug Administration. Advanced Therapeutics, 2019, 2, 1900036.	3.2	22
96	Porous Silicon Optical Biosensors: Still a Promise or a Failure?. Sensors, 2019, 19, 4776.	3.8	21
97	Quantitative optical sensing in two-component mixtures using porous silicon microcavities. Physica Status Solidi A, 2004, 201, 1011-1016.	1.7	18
98	Resonant cavity enhanced optical microsensor for molecular interactions based on porous silicon. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 886-891.	1.8	18
99	Recent Advances on Diatom-Based Biosensors. Sensors, 2019, 19, 5208.	3.8	18
100	Antifungal and Antibiofilm Activity of Cyclic Temporin L Peptide Analogues against Albicans and Non-Albicans Candida Species. Pharmaceutics, 2022, 14, 454.	4.5	18
101	Ellipsometric Study of Liquid Crystal Infiltrated Porous Silicon. Molecular Crystals and Liquid Crystals, 2007, 465, 359-370.	0.9	17
102	An integrated pressure-driven microsystem based on porous silicon for optical monitoring of gaseous and liquid substances. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 1459-1463.	1.8	17
103	Quantification and Reduction of the Residual Chemical Reactivity of Passivated Biodegradable Porous Silicon for Drug Delivery Applications. Silicon, 2018, 10, 349-359.	3.3	17
104	Electric field-induced mode splitting in a liquid crystal waveguide. Optics Communications, 1994, 109, 253-257.	2.1	16
105	Nanostructured silicon-based biosensors for the selective identification of analytes of social interest. Journal of Physics Condensed Matter, 2006, 18, S2019-S2028.	1.8	16
106	Hydrophobin Vmh2–glucose complexes self-assemble in nanometric biofilms. Journal of the Royal Society Interface, 2012, 9, 2450-2456.	3.4	16
107	Microfluidics assisted biosensors for label-free optical monitoring of molecular interactions. Sensors and Actuators B: Chemical, 2013, 179, 157-162.	7.8	16
108	ATR FT-IR spectroscopy on Vmh2 hydrophobin self-assembled layers for Teflon membrane bio-functionalization. Applied Surface Science, 2015, 351, 673-680.	6.1	16

#	Article	IF	Citations
109	Photoluminescence enhancement of graphene oxide emission by infiltration in an aperiodic porous silicon multilayer. Optics Express, 2016, 24, 24413.	3.4	16
110	Selfâ€assembly of two hydrophobins from marine fungi affected by interaction with surfaces. Biotechnology and Bioengineering, 2017, 114, 2173-2186.	3.3	16
111	Reversible sensing of heavy metal ions using lysine modified oligopeptides on porous silicon and gold. Sensors and Actuators B: Chemical, 2017, 244, 142-150.	7.8	16
112	Design of Gelatin-Capped Plasmonic-Diatomite Nanoparticles with Enhanced Galunisertib Loading Capacity for Drug Delivery Applications. International Journal of Molecular Sciences, 2021, 22, 10755.	4.1	16
113	In Vivo Toxicity Assessment of Hybrid Diatomite Nanovectors Using <i>Hydra vulgaris</i> as a Model System. Advanced Biology, 2019, 3, e1800247.	3.0	15
114	Milling effects upon quantitative determinations of chrysotile asbestos by the reference intensity ratio method. Powder Diffraction, 2000, 15, 26-29.	0.2	14
115	Dispersion of thermo-optic coefficient in porous silicon layers of different porosities. Applied Physics Letters, 2005, 86, 061107.	3.3	14
116	Direct Synthesis of Oligonucleotides on Nanostructured Silica Multilayers. Journal of Physical Chemistry C, 2010, 114, 2617-2621.	3.1	14
117	Spectroscopic ellipsometry study of liquid crystal and polymeric thin films in visible and near infrared. European Physical Journal E, 2004, 14, 185-192.	1.6	13
118	A new strategy for label-free detection of lymphoma cancer cells. Biomedical Optics Express, 2015, 6, 1353.	2.9	13
119	Characterization of a Surface-Active Protein Extracted from a Marine Strain of Penicillium chrysogenum. International Journal of Molecular Sciences, 2019, 20, 3242.	4.1	13
120	Enzymes and proteins from extremophiles as hyperstable probes in nanotechnology: the use of D-trehalose/D-maltose-binding protein from the hyperthermophilic archaeon Thermococcus litoralis for sugars monitoring. Extremophiles, 2008, 12, 69-73.	2.3	12
121	A parametric study of laser induced ablation–oxidation on porous silicon surfaces. Journal of Physics Condensed Matter, 2008, 20, 265009.	1.8	12
122	Hybrid bio/non-bio interfaces for protein-glucose interaction monitoring. Journal of Applied Physics, 2013, 114, 134904.	2.5	12
123	Nonlinear Effects in Liquid Crystal Waveguides: Theory and Experiment. Molecular Crystals and Liquid Crystals, 1996, 282, 269-285.	0.3	11
124	Confocal imaging of protein distributions in porous silicon optical structures. Journal of Physics Condensed Matter, 2007, 19, 395009.	1.8	11
125	Nonlinear optical propagation in dye-doped liquid crystal waveguides. Journal of Optics, $1999, 1, 390-397$.	1.5	10
126	High accuracy optical characterization of anisotropic liquids by merging standard techniques. Applied Physics Letters, 2006, 89, 221110.	3.3	10

#	Article	IF	Citations
127	Optics with diatoms: towards efficient, bioinspired photonic devices at the micro-scale., 2013,,.		10
128	Vmh2 hydrophobin layer entraps glucose: A quantitative characterization by label-free optical and gravimetric methods. Applied Surface Science, 2016, 364, 201-207.	6.1	10
129	Modified denatured lysozyme effectively solubilizes fullerene c60 nanoparticles in water. Nanotechnology, 2017, 28, 335601.	2.6	10
130	PNA-Based Graphene Oxide/Porous Silicon Hybrid Biosensor: Towards a Label-Free Optical Assay for Brugada Syndrome. Nanomaterials, 2020, 10, 2233.	4.1	10
131	Timeâ€gated luminescence imaging of positively charged poly†l†lysineâ€coated highly microporous silicon nanoparticles in living Hydra polyp. Journal of Biophotonics, 2020, 13, e202000272.	2.3	10
132	Tunable NIR filter based on a free-standing porous silicon film containing nematic liquid crystal. Journal of Optics, 2009, 11, 105106.	1.5	9
133	Photomasks Fabrication Based on Optical Reduction for Microfluidic Applications. Micromachines, 2013, 4, 206-214.	2.9	9
134	Synthesis of mixed-sequence oligonucleotides on mesoporous silicon: chemical strategies and material stability. Nanoscale Research Letters, 2014, 9, 317.	5.7	9
135	Bioconjugation of a PNA Probe to Zinc Oxide Nanowires for Label-Free Sensing. Nanomaterials, 2021, 11, 523.	4.1	9
136	TG, FT-IR and NMR characterization of n-C16H34 contaminated alumina and silica after mechanochemical treatment. Chemosphere, 2008, 70, 1068-1076.	8.2	8
137	A nanostructured hybrid material based on polymer infiltrated porous silicon layer. Applied Physics A: Materials Science and Processing, 2010, 98, 525-530.	2.3	8
138	Nanogravimetric and Optical Characterizations of Thrombin Interaction with a Self-Assembled Thiolated Aptamer. Journal of Sensors, 2016, 2016, 1-8.	1.1	8
139	Toward Multi-Parametric Porous Silicon Transducers Based on Covalent Grafting of Graphene Oxide for Biosensing Applications. Frontiers in Chemistry, 2018, 6, 583.	3.6	8
140	InÂVivo Bioengineering of Fluorescent Conductive Protein-Dye Microfibers. IScience, 2020, 23, 101022.	4.1	8
141	π–π stacked DNA G-wire nanostructures formed by a short G-rich oligonucleotide containing a 3′–3′ inversion of polarity site. Organic Chemistry Frontiers, 2020, 7, 2187-2195.	4.5	8
142	Oxygen indicator films of acrylate photopolymers and TiO ₂ nanoparticles with tunable response times. Optical Materials Express, 2021, 11, 2244.	3.0	8
143	H ³ (Hydrogelâ€Based, Highâ€Sensitivity, Hybrid) Plasmonic Transducers for Biomolecular Interactions Monitoring. Advanced Materials Technologies, 2022, 7, .	5.8	8
144	Biochips at work: porous silicon microbiosensor for proteomic diagnostic. Journal of Physics Condensed Matter, 2007, 19, 395007.	1.8	7

#	Article	IF	CITATIONS
145	Optical microsystems based on a nanomaterial technology. Journal of Physics Condensed Matter, 2007, 19, 395008.	1.8	7
146	Playing with light in diatoms: small water organisms with a natural photonic crystal structure. , 2007, 6593, 305.		7
147	Biological passivation of porous silicon by a self-assembled nanometric biofilm of proteins. Journal of Nanophotonics, 2009, 3, 031985.	1.0	7
148	Numerical Optimization of a Microfluidic Assisted Microarray for the Detection of Biochemical Interactions. Sensors, 2011, 11, 9658-9666.	3.8	7
149	Diatom Valve Three-Dimensional Representation: A New Imaging Method Based on Combined Microscopies. International Journal of Molecular Sciences, 2016, 17, 1645.	4.1	7
150	Design and Synthesis of Hybrid PEGylated Metal Monopicolinate Cyclam Ligands for Biomedical Applications. ACS Omega, 2019, 4, 2500-2509.	3.5	7
151	Comparison between Two FT-IR Spectroscopy Analytical Procedures for Micrograms Determination of Asbestos Species in Bulk Materials. American Journal of Analytical Chemistry, 2012, 03, 1-5.	0.9	7
152	A porous silicon Bragg grating waveguide by direct laser writing. Journal of Physics Condensed Matter, 2008, 20, 365203.	1.8	6
153	Photoemissive properties and stability of undecylenic acid-modified porous silicon nanoparticles in physiological medium. Applied Physics Letters, 2019, 114, .	3.3	6
154	Underwater Light Manipulation by the Benthic Diatom Ctenophora pulchella: From PAR Efficient Collection to UVR Screening. Nanomaterials, 2021, 11, 2855.	4.1	6
155	Modulating light with light: A slab waveguide-liquid crystal device. Molecular Crystals and Liquid Crystals, 1994, 251, 93-100.	0.3	5
156	Nonlinear scattering in a polymeric blend. Optics Communications, 1994, 112, 169-174.	2.1	5
157	ZLI-1695 Liquid Crystal Anisotropy Characterization in the Near Infrared by Generalized Ellipsometry. Molecular Crystals and Liquid Crystals, 2003, 398, 249-258.	0.9	5
158	Quantitative measurements of hydro-alcoholic binary mixtures by porous silicon optical microsensors. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 1941-1945.	0.8	5
159	Mapping electric fields generated by microelectrodes using optically trapped charged microspheres. Lab on A Chip, 2011, 11, 4113.	6.0	5
160	Hybrid organic–inorganic porous semiconductor transducer for multi-parameters sensing. Journal of the Royal Society Interface, 2015, 12, 20141268.	3.4	5
161	Chemical and Structural Characterization of Several Mid-Term Explanted Breast Prostheses. Materials, 2016, 9, 678.	2.9	5
162	Synthesis and characterization of Ag-Protoporphyrin nano structures using mixed co-polymer method. Frontiers in Laboratory Medicine, 2017, 1, 49-54.	1.7	5

#	Article	lF	CITATIONS
163	Covalent grafting of graphene oxide on functionalized macroporous silicon. Open Material Sciences, 2018, 4, 15-22.	0.8	5
164	Synthesis and Surface Modification of Nanostructured F-Doped ZnO: Toward a Transducer for Label-Free Optical Biosensing. Applied Sciences (Switzerland), 2019, 9, 3380.	2.5	5
165	Analysis of modal coupling between glassy and liquid crystal planar waveguides. , 1996, , .		4
166	An integrated hybrid optical device for sensing applications. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 1946-1950.	0.8	4
167	Laser direct-writing of Bragg gratings waveguides on porous silicon. , 2008, , .		4
168	Label-free biosensing by means of optical micro-ring resonator. Proceedings of SPIE, 2009, , .	0.8	4
169	Microscopy assisted fabrication of a hydrogel-based microfluidic filter. Journal of the European Optical Society-Rapid Publications, 2015, 10, 15058.	1.9	4
170	Peptide Functionalization of Silicon for Detection and Classification of Prostatic Cells. Journal of Sensors, 2017, 2017, 1-9.	1.1	4
171	Hybrid Organic/Inorganic Nanomaterials for Biochemical Sensing. Lecture Notes in Electrical Engineering, 2021, , 93-99.	0.4	4
172	Theranostic Microneedle Devices: Innovative Biosensing and Transdermal Drugs Administration. , 0, , .		4
173	Thermally induced optical bistability in a new polymeric blend at room temperature. Applied Physics B: Lasers and Optics, 1993, 57, 199-201.	2.2	3
174	Experimental Results on the Light Propagation in a Nonlinear Waveguide with Nematic Liquid Crystal: Hybrid Alignment Case. Molecular Crystals and Liquid Crystals, 1995, 266, 269-276.	0.3	3
175	A theoretical and experimental investigation of TM mode propagation in a nonlinear hybrid aligned liquid crystal waveguide. Journal of Physics B: Atomic, Molecular and Optical Physics, 1997, 30, 5587-5598.	1.5	3
176	EXPERIMENTAL OBSERVATION OF NONLINEAR BEAM SPLITTING IN DYE-DOPED LIQUID CRYSTAL WAVEGUIDES. Journal of Nonlinear Optical Physics and Materials, 1999, 08, 319-327.	1.8	3
177	Porous silicon optical sensors for vapors, liquids, and biological molecules. , 2003, 5118, 305.		3
178	Optical properties of porous silicon Thue-Morse structures. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 1966-1970.	0.8	3
179	Optical sensing of chemicals by a porous silicon Bragg grating waveguide. Proceedings of SPIE, 2008, ,	0.8	3
180	Protein conformational changes revealed by optical spectroscopic reflectometry in porous silicon multilayers. Journal of Physics Condensed Matter, 2009, 21, 035115.	1.8	3

#	Article	IF	CITATIONS
181	Silicon-Based Technology for Ligand-Receptor Molecular Identification. Journal of Atomic, Molecular, and Optical Physics, 2012, 2012, 1-5.	0.5	3
182	Diagnostic and therapeutic devices based on polymeric microneedles: fabrication and preliminary results., 2015,,.		3
183	Denatured lysozyme-coated carbon nanotubes: a versatile biohybrid material. Scientific Reports, 2019, 9, 16643.	3.3	3
184	Light switching at a prism-liquid crystal interface. A new sensor for magnetic fields. Applied Physics B: Lasers and Optics, 1996, 63, 385-388.	2.2	2
185	Nonlinear Optical Propagation in a Dye-Doped Nematic Liquid Crystal Waveguide. Journal of Nonlinear Optical Physics and Materials, 1998, 07, 303-312.	1.8	2
186	Silicon based optical biochips for biomedical applications. , 2014, , .		2
187	Bioconjugation of Heavy Metal-binding Proteins on Surface: An Optical and Gravimetric Characterization. Procedia Engineering, 2014, 87, 292-295.	1.2	2
188	A silicon-based peptide biosensor for label-free detection of cancer cells. , 2015, , .		2
189	Glucose sensing electrode system based on polymeric microneedles. , 2016, , .		2
190	CHAPTER 9. Diatoms: A Natural Source of Nanostructured Silica for Drug Delivery. RSC Nanoscience and Nanotechnology, 0, , 201-218.	0.2	2
191	Optical bistability by nonlinear reflection in a polymeric blend. Applied Physics B: Lasers and Optics, 1996, 63, 155-159.	2.2	1
192	Low-cost VLSI-compatible resonant-cavity-enhanced p-i-n in micron-Si operating at the VCSEL wavelengths around 850 nm. , 2003, , .		1
193	Photonic bandgap approach in designing microcavity-based optical sensors. , 2004, , .		1
194	Microcrystalline silicon p–i–n photodetectors for telecommunications and photovoltaic applications. Journal of Non-Crystalline Solids, 2004, 338-340, 784-787.	3.1	1
195	Optical characterisation of biological nano-porous silica structures. , 2005, , .		1
196	Design and realization of highly stable porous silicon optical biosensor based on proteins from extremophiles., 2007,,.		1
197	Oligonucleotides direct synthesis on porous silicon chip. Nucleic Acids Symposium Series, 2008, 52, 721-722.	0.3	1
198	Hybrid optical biosensor based on polymer infiltrated porous silicon device. , 2008, , .		1

#	Article	IF	Citations
199	Intrinsic photoluminescence of diatom shells in sensing applications. , 2009, , .		1
200	Modelling biochemical interactions in a microfluidic assisted porous silicon microarray for optical sensing. , $2011, , .$		1
201	Porous silicon and diatoms micro-shells: an example of inverse biomimetic., 2011,,.		1
202	Evaluation of thin metal film thickness from light attenuation and multi-reflection effects on micro-Raman response. Thin Solid Films, 2013, 536, 142-146.	1.8	1
203	Natural and synthetic nanostructured materials for biomedical applications. , 2015, , .		1
204	Diatomite nanoparticles as potential drug delivery systems. , 2015, , .		1
205	Bioconjugation of Peptides to Hybrid Gold Nanoparticles. Methods in Molecular Biology, 2021, 2355, 105-115.	0.9	1
206	Porous Silicon for Microdevices and Microsystems. , 2014, , 797-804.		1
207	Hybrid Hydrophobin/Gold Nanoparticles: Synthesis and Characterization of New Synthetic Probes for Biological Applications. Lecture Notes in Electrical Engineering, 2018, , 169-176.	0.4	1
208	Porous Silicon-Based Optical Chemical Sensors. , 2015, , 69-94.		1
209	CHAPTER 5. Micro- and Nano-optical Devices from Diatom Nanostructures: Light Control by Mother Nature. RSC Nanoscience and Nanotechnology, 0, , 111-125.	0.2	1
210	Diatomite-based nanoparticles: Fabrication strategies for medical applications. , 2022, , 427-446.		1
211	Porous silicon microcavities for sensing purposes: modeling and experimental results., 2003,,.		O
212	Photonic bandgap analysis based on the dynamical diffraction theory and its application to multilayer structures., 2004, 5450, 557.		0
213	Anodically bonded silicon-glass optical chip for biochemical sensing applications. , 2005, , .		O
214	Dynamical diffraction and band structure analysis application to the design of vapor sensors based on porous silicon microcavities. , 2005, 5733, 316.		0
215	Aperiodic photonic bandgap devices based on nanostructured porous silicon. , 2007, , .		0
216	An optical microsystem based on vertical silicon-air Bragg mirror for liquid substances monitoring., 2007,,.		0

#	Article	IF	CITATIONS
217	Electrical Reorientation of Liquid Crystal within Silicon Macropore for Photonic Devices., 2007,,.		O
218	Free-standing porous silicon film with a tunable microcavity containing nematic liquid crystal. , 2008, , .		0
219	Light micro-lensing effect in biosilica shells of diatoms microalgae. , 2008, , .		0
220	Active NIR filter with a free-standing porous silicon microcavity containing liquid crystal., 2008,,.		0
221	Integrated optical biosensors and biochips based on porous silicon technology. , 2008, , .		0
222	Optical detection of PNA/DNA hybridization in resonant porous silicon-based devices. , 2008, , .		0
223	Micro and nanophotonics in silicon: new perspectives and applications., 2009,,.		0
224	New perspectives and applications of silicon nanophotonics. Proceedings of SPIE, 2010, , .	0.8	0
225	Light confinement in marine centric diatoms: main characteristics and wavelength dependence. , 2010, , .		0
226	A porous silicon based microarray for label-free optical detection of DNA hybridization. Proceedings of SPIE, 2010, , .	0.8	0
227	A porous silicon based microfluidic array for the optical monitoring of biomolecular interactions. , $2011,\ldots$		0
228	Hybrid interfaces for a new class of optical biosensors. Proceedings of SPIE, 2013, , .	0.8	0
229	Porous Silicon for Microdevices and Microsystems., 2014,, 1-8.		0
230	Aminosilane-modified mesoporous oxidized silicon for in situ oligonucleotides synthesis and detection. , 2014, , .		0
231	Nanostructured photonic biosensor for heavy metal detection design and development of porous silicon optical biosensors. , 2014, , .		0
232	Three-dimensional imaging using digital holography and scanning electron microscopy. , 2014, , .		0
233	PDIF-CN2 modified porous silicon optical and electrical transducers for biochemical sensing electrical and optical sensing by porous silicon devices. , 2014, , .		0
234	Hydrophobin-glucose interaction monitored by porous silicon optical multi-layers hybrid interfaces for sugar-proteins interaction monitoring. , 2014, , .		0

#	Article	IF	CITATIONS
235	Sub-diffractive light confinement: A biological-based approach. , 2014, , .		O
236	Combining focusing properties of a single diatom valve with optical eigenmodes in ultra-shrinking of light. , 2014 , , .		0
237	Graphene oxide-based mesoporous silicon as tunable platform for optical applications. , 2015, , .		O
238	Hybrid organic-inorganic semiconductor transducer for optical and electrical sensing. Proceedings of SPIE, 2015, , .	0.8	0
239	Photoluminescence of graphene oxide integrated with silicon substrates., 2015,,.		O
240	Hybrid microneedles devices for diagnostic and therapeutic applications: fabrication and preliminary results. Proceedings of SPIE, 2015, , .	0.8	0
241	Photoluminescence characterization of ZnO nanowires functionalization., 2015,,.		O
242	Improving the gas sensing performance of chemiresistors by LED irradiation. , 2015, , .		0
243	Bioengineered Surfaces for Real-Time Label-Free Detection of Cancer Cells. , 0, , .		0
244	Porous Silicon for Microdevices and Microsystems. , 2016, , 1-9.		0
245	Porous Silicon for Microdevices and Microsystems. , 2018, , 1179-1187.		0
246	Diatomite nanovectors uptake in cancer cells: a Raman imaging study. , 2018, , .		O
247	Intracellular SERS monitoring of drug release from plasmonic-assisted biosilica nanoparticles. EPJ Web of Conferences, 2021, 255, 13002.	0.3	0
248	Hydrogel-based Nanocomposite Plasmonic Sensors for Biomedical Applications. , 2020, , .		0
249	Plasmonic Hydrogel Nanocomposites with Combined Optical and Mechanical Properties for Biochemical Sensing., 2021, 5,.		0
250	Liquid Biopsy beyond Cancer: A miRNA Detection in Serum with Electrochemical Chip for Nonâ€Invasive Coeliac Disease Diagnosis. Advanced NanoBiomed Research, 0, , 2200015.	3.6	0