Hongkuan Fan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6913297/publications.pdf

Version: 2024-02-01

38	1,693	20	37
papers	citations	h-index	g-index
38	38	38	2338
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Molecular mechanisms of endotoxin tolerance. Journal of Endotoxin Research, 2004, 10, 71-84.	2.5	398
2	Exosomes from endothelial progenitor cells improve outcomes of the lipopolysaccharide-induced acute lung injury. Critical Care, 2019, 23, 44.	2.5	183
3	Exosomes from Endothelial Progenitor Cells Improve the Outcome of a Murine Model of Sepsis. Molecular Therapy, 2018, 26, 1375-1384.	3.7	145
4	\hat{l}^2 -Arrestins 1 and 2 differentially regulate LPS-induced signaling and pro-inflammatory gene expression. Molecular Immunology, 2007, 44, 3092-3099.	1.0	80
5	Endothelial Progenitor Cells and a Stromal Cell–derived Factor-1α Analogue Synergistically Improve Survival in Sepsis. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 1509-1519.	2.5	71
6	Betaâ€arrestin 2 negatively regulates sepsisâ€induced inflammation. Immunology, 2010, 130, 344-351.	2.0	65
7	TOLL-LIKE RECEPTOR 4 COUPLED GI PROTEIN SIGNALING PATHWAYS REGULATE EXTRACELLULAR SIGNAL-REGULATED KINASE PHOSPHORYLATION AND AP-1 ACTIVATION INDEPENDENT OF NFήB ACTIVATION. Shock, 2004, 22, 57-62.	1.0	64
8	Plasma levels of microRNA are altered with the development of shock in human sepsis: an observational study. Critical Care, 2015, 19, 440.	2.5	58
9	The role of miRNAs in cardiovascular disease risk factors. Atherosclerosis, 2016, 254, 271-281.	0.4	51
10	Increased expression of beta-arrestin 1 and 2 in murine models of rheumatoid arthritis: Isoform specific regulation of inflammation. Molecular Immunology, 2011, 49, 64-74.	1.0	48
11	Human kallistatin administration reduces organ injury and improves survival in a mouse model of polymicrobial sepsis. Immunology, 2014, 142, 216-226.	2.0	43
12	Lipopolysaccharide- and gram-positive bacteria-induced cellular inflammatory responses: role of heterotrimeric Gî±i proteins. American Journal of Physiology - Cell Physiology, 2005, 289, C293-C301.	2.1	42
13	Lysophosphatidic Acid Inhibits Bacterial Endotoxin-Induced Pro-Inflammatory Response: Potential Anti-Inflammatory Signaling Pathways. Molecular Medicine, 2008, 14, 422-428.	1.9	42
14	Beneficial Effect of a CXCR4 Agonist in Murine Models of Systemic Inflammation. Inflammation, 2012, 35, 130-137.	1.7	38
15	Kallistatin treatment attenuates lethality and organ injury in mouse models of established sepsis. Critical Care, 2015, 19, 200.	2.5	32
16	\hat{l}^2 -Arrestins 1 and 2 are critical regulators of inflammation. Innate Immunity, 2014, 20, 451-460.	1.1	28
17	beta-Arrestin 2: a Negative Regulator of Inflammatory Responses in Polymorphonuclear Leukocytes. International Journal of Clinical and Experimental Medicine, 2008, 1, 32-41.	1.3	27
18	Involvement of Gi proteins and Src tyrosine kinase in TNFα production induced by lipopolysaccharide, group B Streptococci and Staphylococcus aureus. Cytokine, 2003, 22, 126-133.	1.4	26

#	Article	IF	CITATIONS
19	Differential regulation of lipopolysaccharide and Gram-positive bacteria induced cytokine and chemokine production in macrophages by G?iproteins. Immunology, 2007, 122, 116-123.	2.0	23
20	Fli-1 Governs Pericyte Dysfunction in a Murine Model of Sepsis. Journal of Infectious Diseases, 2018, 218, 1995-2005.	1.9	23
21	Heterotrimeric Gαi proteins are regulated by lipopolysaccharide and are anti-inflammatory in endotoxemia and polymicrobial sepsis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 466-472.	1.9	21
22	A Stromal Cell-Derived Factor 1α Analogue Improves Endothelial Cell Function in Lipopolysaccharide-Induced Acute Respiratory Distress Syndrome. Molecular Medicine, 2016, 22, 115-123.	1.9	17
23	Application of Deacetylated Poly-N-Acetyl Glucosamine Nanoparticles for the Delivery of miR-126 for the Treatment of Cecal Ligation and Puncture-Induced Sepsis. Inflammation, 2019, 42, 170-184.	1.7	17
24	Toll-like Receptor-Induced Inflammatory Cytokines are Suppressed by Gain of Function or Overexpression of $\widehat{Gl}\pm i2$ Protein. Inflammation, 2012, 35, 1611-1617.	1.7	16
25	Circulating miRNA 887 is differentially expressed in ARDS and modulates endothelial function. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L1261-L1269.	1.3	15
26	Differential regulation of lipopolysaccharide and Gram-positive bacteria induced cytokine and chemokine production in splenocytes by \widehat{Gl} ti proteins. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 1051-1058.	1.9	14
27	Expression of GM-CSF Is Regulated by Fli-1 Transcription Factor, a Potential Drug Target. Journal of Immunology, 2021, 206, 59-66.	0.4	14
28	Suppression of Fli-1 protects against pericyte loss and cognitive deficits in Alzheimer's disease. Molecular Therapy, 2022, 30, 1451-1464.	3.7	14
29	Combined treatment with a CXCL12 analogue and antibiotics improves survival and neutrophil recruitment and function in murine sepsis. Immunology, 2015, 144, 405-411.	2.0	12
30	Generation of a new immortalized human lung pericyte cell line: a promising tool for human lung pericyte studies. Laboratory Investigation, 2021, 101, 625-635.	1.7	11
31	Fli-1 transcription factor regulates the expression of caspase-1 in lung pericytes. Molecular Immunology, 2019, 108, 1-7.	1.0	10
32	IncRNA Neat1 regulates neuronal dysfunction post-sepsis via stabilization of hemoglobin subunit beta. Molecular Therapy, 2022, 30, 2618-2632.	3.7	10
33	miR-145a Regulation of Pericyte Dysfunction in a Murine Model of Sepsis. Journal of Infectious Diseases, 2020, 222, 1037-1045.	1.9	9
34	Sectm1a Facilitates Protection against Inflammation-Induced Organ Damage through Promoting TRM Self-Renewal. Molecular Therapy, 2021, 29, 1294-1311.	3.7	8
35	Regulation of dendritic cell function improves survival in experimental sepsis through immune chaperone. Innate Immunity, 2019, 25, 235-243.	1.1	7
36	Gi proteins regulate lipopolysaccharide and Staphylococcus aureus induced cytokine production but not $(1(r)\ 3)$ -beta-D-glucan induced cytokine suppression. Frontiers in Bioscience - Landmark, 2006, 11 , 2264.	3.0	7

Hongkuan Fan

#	Article	lF	CITATIONS
37	Proteomic Analysis of Exosomes Secreted from Human Alpha-1 Antitrypsin Overexpressing Mesenchymal Stromal Cells. Biology, 2022, 11, 9.	1.3	4
38	What's New in Shock, March 2019?. Shock, 2019, 51, 269-272.	1.0	0