Saran Sarangapany

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6913294/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Green Synthesized Magnetically Separable Iron Oxide Nanoparticles for Efficient Heterogeneous Photo-Fenton Degradation of Dye Pollutants. Journal of Cluster Science, 2022, 33, 675-685.	1.7	8
2	Facile Green Synthesis of Ag@g-C3N4 for Enhanced Photocatalytic and Catalytic Degradation of Organic Pollutant. Journal of Cluster Science, 2021, 32, 585-592.	1.7	12
3	Role of pretreatment and evidence for the enhanced biodegradation and mineralization of low-density polyethylene films by greater waxworm. Environmental Technology (United Kingdom), 2021, 42, 717-730.	1.2	29
4	A facile biogenic-mediated synthesis of Ag nanoparticlesÂover anchoredÂZnO for enhanced photocatalytic degradation of organic dyes. , 2021, , 275-287.		3
5	Feasibility study of a point of use technique for water treatment using plant-based coagulant and isolation of a bioactive compound with bactericidal properties. Separation Science and Technology, 2020, 55, 112-122.	1.3	8
6	Sustainable Utilization of Molasses Towards Green Synthesis of Silver Nanoparticles for Colorimetric Heavy Metal Sensing and Catalytic Applications. Journal of Cluster Science, 2020, 31, 1137-1145.	1.7	13
7	Facile green synthesis of magnetically separable Au–Pt@TiO2 nanocomposite for efficient catalytic reduction of organic pollutants and selective oxidation of glycerol. Journal of Alloys and Compounds, 2020, 830, 154636.	2.8	24
8	Facile green synthesis of Ag–Cu decorated ZnO nanocomposite for effective removal of toxic organic compounds and an efficient detection of nitrite ions. Journal of Environmental Management, 2020, 262, 110282.	3.8	59
9	Cytotoxic and antioxidant activity of the polysaccharide isolated from the seeds of Strychnos potatorum. Biocatalysis and Agricultural Biotechnology, 2020, 25, 101586.	1.5	6
10	Efficient biodegradation of polyethylene (HDPE) waste by the plastic-eating lesser waxworm (Achroia) Tj ETQq0 0	0.rgBT /O 2.9	verlock 10 T 128
11	Isolation of active coagulant protein from the seeds of <i>Strychnos potatorum</i> – a potential water treatment agent. Environmental Technology (United Kingdom), 2019, 40, 1624-1632.	1.2	20
12	Reclamation of grey water for non-potable purposes using pilot-scale solar photocatalytic tubular reactors. Environmental Technology (United Kingdom), 2019, 40, 3190-3199.	1.2	14
13	Highly recyclable and ultra-rapid catalytic reduction of organic pollutants on Ag–Cu@ZnO bimetal nanocomposite synthesized via green technology. Applied Nanoscience (Switzerland), 2018, 8, 1123-1131.	1.6	5
14	Synergistic eminently active catalytic and recyclable Ag, Cu and Ag-Cu alloy nanoparticles supported on TiO2 for sustainable and cleaner environmental applications: A phytogenic mediated synthesis. Journal of Cleaner Production, 2018, 177, 134-143.	4.6	38
15	A Facile and Convenient Route for Synthesis of Silver Biopolymer Gel Bead Nanocomposites by Different Approach Towards Immobilization and Its Catalytic Applications. Catalysis Letters, 2018, 148, 1514-1524.	1.4	13
16	Disinfection of roof harvested rainwater for potable purpose using pilot-scale solar photocatalytic fixed bed tubular reactor. Water Science and Technology: Water Supply, 2018, 18, 49-59.	1.0	8

17	Novel Synthesis of Cu@ZnO and Ag@ZnO Nanocomposite via Green Method: A Comparative Study for Ultra-Rapid Catalytic and Recyclable Effects. Catalysis Letters, 2018, 148, 2561-2571.	1.4	23
18	Catalytic and recyclability properties of phytogenic copper oxide nanoparticles derived from Aglaia elaeagnoidea flower extract. Journal of Saudi Chemical Society, 2017, 21, 610-618.	2.4	91

2

SARAN SARANGAPANY

#	Article	IF	CITATIONS
19	Facile Aglaia elaeagnoidea Mediated Synthesis of Silver and Gold Nanoparticles: Antioxidant and Catalysis Properties. Journal of Cluster Science, 2017, 28, 2041-2056.	1.7	40
20	Solar photocatalytic decolorization of synthetic dye solution using pilot scale slurry type falling film reactor. Korean Journal of Chemical Engineering, 2017, 34, 2984-2992.	1.2	9
21	A High-Performance Catalytic and Recyclability of Phyto-Synthesized Silver Nanoparticles Embedded in Natural Polymer. Journal of Cluster Science, 2017, 28, 3127-3138.	1.7	17
22	Recovery and reuse of TiO2 photocatalyst from aqueous suspension using plant based coagulant - A green approach. Korean Journal of Chemical Engineering, 2016, 33, 2107-2113.	1.2	26
23	Pilot scale thin film plate reactors for the photocatalytic treatment of sugar refinery wastewater. Environmental Science and Pollution Research, 2016, 23, 17730-17741.	2.7	24