Hidenobu Shiroishi

List of Publications by Year

 in descending orderSource: https:|/exaly.com/author-pdf/691312/publications.pdf
Version: 2024-02-01

Synthesis of Pt nanoparticles as catalysts of oxygen reduction with microbubble-assisted low-voltage and low-frequency solution plasma processing. Journal of Power Sources, 2018, 382, 69-76.

Microwave-assisted hydrothermal synthesis of ZnO and Zn -terephthalate hybrid nanoparticles
employing benzene dicarboxylic acids. Microsystem Technologies, 2018, 24, 699-708.

Development of non-platinum oxygen reduction catalysts prepared from metal-organic framework 4 using 4,4ấ $€^{2}$-bipyridine as a bridging ligand. Materials Science and Engineering B: Solid-State Materials forAdvanced Technology, 2018, 228, 190-197.
5 Lanthanum Manganite-based Air Electrode Catalysts and Their Application to Lithium-air Batteries:

11	Synthesis and Application of Carbon Nanotubes to Clucose Biofuel Cell with Glucose Oxidase andp-Benzoquinone. Journal of the Electrochemical Society, 2015, 162, F1482-F1486.	2.9	5
12	A simple biofuel cell cathode with human red blood cells as electrocatalysts for oxygen reduction reaction. Biosensors and Bioelectronics, 2014, 55, 14-18.	10.1	21
13	Synthesis of multiwall carbon nanotube-supported platinum catalysts by solution plasma processing for oxygen reduction in polymer electrolyte fuel cells. Electrochimica Acta, 2014, 146, 73-78.	5.2	23

14 Oxygen Reduction Catalytic Activity of Hollandite-Type Manganese Oxides. Key Engineering Materials,
$0.4 \quad 1$

$$
\begin{aligned}
& 15 \text { Dissolution Rate of Noble Metals for Electrochemical Recycle in Polymer Electrolyte Fuel Cells. } \\
& \text { Electrochemistry, 2012, 80, 898-903. }
\end{aligned}
$$

[^0]$19 \quad \begin{aligned} & \text { Oxygen Reduction Electrode P } \\ & \text { Catalysis, 2009, 52, 903-911. }\end{aligned}$ 2.8 122.77
Proton conductivity and microstructures of the core-shell type solid electrolytes in the MO2-In2O3-P2O5 (MTi, Sn, Zr) systems. Solid State lonics, 2009, 180, 569-574. 20
Electrocatalytic O2 Reduction Properties of Pyrochlore-Type Oxides for Alkaline DAFCs. ECS
Transactions, 2008, 16, 891-900.0.54
Oxygen Reduction Electrode Properties of Pyrochlores
22 Ln\<sub\>2\&|t;/sub\>Ru\<sub\>2\</sub\>O\&|t;sub\>7-1’\</sub\>(Ln=Pr, Nd, Sm) in 0.4 Aqueous Solutions. Key Engineering Materials, 2007, 350, 167-170.
Effects of the Substitution of $\hat{\mathrm{h}}^{\prime}$-Site lon on Oxygen Reduction Electrode Properties of
23 Pb\<sub\>2\&|t;/sub\>Ru\&|t;sub\> 2\&|t;/sub\>O\&|t;sub\> 7- $\hat{l}^{\prime} \&|t ;| s u b \& g t ;$ in Aqueous Solutions. $0.4 \quad 5$ Key Engineering Materials, 2007, 350, 171-174.
24 PROTON CONDUCTING SOLID ELECTROLYTES BASED ON DIPHOSPHATES. Phosphorus Research Bulletin, 2007, 21, 31-37. $0.6 \quad 13$
25 Passive micro tubular direct formic acid fuel cells (DFAFCs) with chemically assembled Pd anode nano-catalysts on polymer electrolytes. Electrochimica Acta, 2007, 53, 59-65. $5.2 \quad 15$
26 High CO Tolerance ofN,N-Ethylenebis(salicylideneaminato)oxovanadium(IV) as a Cocatalyst to Pt forthe Anode of Reformate Fuel Cells. Chemistry of Materials, 2006, 18, 4505-4512.
6.7 14
27 Effect of cobalt bis(dicarbollides) on electrochemical oxygen reduction on Pt electrode in methanolâ€"acid solution. Electrochimica Acta, 2006, 51, 1225-1234.
$5.2 \quad 6$
29 New CO tolerant electro-catalysts exceeding Ptâ€"Ru for the anode of fuel cells. Chemical
Communications, 2005, , 1212-1214.
4.1 19
Mechanism of Selective Oxygen Reduction on Platinum by 2,2ấ ${ }^{\sim}$-Bipyridine in the Presence of Methanol.
Langmuir, 2005, 21, 3037-3043.$3.5 \quad 3$
\square
Quasi-solid medium for photoinduced charge separation. Journal of Photochemistry and
Photobiology A: Chemistry, 2004, 161, 119-124.3.95Effect of Additives on Electrochemical Reduction of Oxygen in the Presence of Methanol. Chemistry1.34$\begin{array}{ll}1.3 & 4\end{array}$
Letters, 2004, 33, 792-793.

```
37 Photoinduced charge separation at polymerâ€"solution interface. Journal of Molecular Catalysis A,
2002, 187, 47-54.
```

Temperature effect on charge transport in a polymer membrane with dispersed [Ru(bpy)3]2+ analogues
38 as studied by spectroelectrochemical methods. Journal of Electroanalytical Chemistry, 2002, 536, 145-150.
Development of Analyzer for Photoluminescence Quenching in a Solid Matrix.. Journal of Computer
Chemistry Japan, 2002, 1, 37-46.

40 Development of Electrochemical Analyzer for Polymer-Coated Electrode. Journal of Computer
 Chemistry Japan, 2002, 1, 65-72.

0.14
Reaction of 5,8-Diphenyl-5,8-dihydroanthra[1,9-bc:4,10-b'c']diquinoline or its Endoperoxide with
Trifluoroacetic Acid.. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi],
$2001,14,239-243$.
Activity analysis of trans-[RuCl2(NH3)4]+ incorporated into Nafion membrane for water oxidation
catalyst. Journal of Molecular Catalysis A, 2001, 169, 269-273.
Analysis of charge hopping between redox center molecules in a polymer membrane based on
percolation theory. Polymers for Advanced Technologies, 2001, 12, 237-243.
Electrocatalytic water oxidation using Ru moieties incorporated into a NafionÂA ${ }^{\circledR}$ coated electrode.
44 Journal of Electroanalytical Chemistry, 2001,502, 132-137.
$45 \quad$ Visualization of Electrochemical Behavior under Finite Conditions Using JAVA and Its Application for \quad Assisted Learning.. Journal of Chemical Software, 2001, 7, 145-152.

Sensitization of TiO 2 particles by dyes to achieve H 2 evolution by visible light. Journal of
Photochemistry and Photobiology A: Chemistry, 2000, 136, 157-161.
Catalytic water oxidation using chemically generated Ru(bpy)33+ oxidant. Journal of Molecular
Catalysis A, 1999, 144, 389-395.

48 Oxygen Reduction Electrode Properties of Oxide Nanosheet-Based Materials. Key Engineering
$0.4 \quad 2$
Materials, 0, 388, 73-76.

A Study of Intermediate Temperature Proton-Conductive Phosphate Electrolytes. Key Engineering
Materials, 0, 388, 93-96.
$0.4 \quad 2$

50 Shell-Core Type Proton Conducting TiP\<sub\>2\</sub\>O\<sub\>7\</sub\>-Based Solid
$0.4 \quad 9$
Electrolytes. Key Engineering Materials, 0, 388, 57-60.

Basic Research of Water Photolysis Using Pyrochlore Oxides. Key Engineering Materials, 0, 388,
297-300.
$0.4 \quad 1$

[^0]: 17 New Oxygen Reduction Electrocatalysts Based on Oxide Nanosheet Materials. ECS Transactions, 2009,
 16, 97-105.

