Hidenobu Shiroishi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/691312/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PEG-nanotube liquid crystals as templates for construction of surfactant-free gold nanorods. Chemical Communications, 2018, 54, 4665-4668.	4.1	8
2	Synthesis of Pt nanoparticles as catalysts of oxygen reduction with microbubble-assisted low-voltage and low-frequency solution plasma processing. Journal of Power Sources, 2018, 382, 69-76.	7.8	14
3	Microwave-assisted hydrothermal synthesis of ZnO and Zn-terephthalate hybrid nanoparticles employing benzene dicarboxylic acids. Microsystem Technologies, 2018, 24, 699-708.	2.0	10
4	Development of non-platinum oxygen reduction catalysts prepared from metal-organic framework using 4,4′-bipyridine as a bridging ligand. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2018, 228, 190-197.	3.5	2
5	Lanthanum Manganite-based Air Electrode Catalysts and Their Application to Lithium-air Batteries: Effects of Carbon Support Oxidation. Electrochemistry, 2018, 86, 265-271.	1.4	5
6	Proton-Coupled Reversible Redox Reaction of Zinc-Terephthalate Metal-Organic Framework. ECS Transactions, 2018, 88, 259-268.	0.5	0
7	Solvent extraction of metal ions using a new extractant, biuret(C8). Separation Science and Technology, 2017, 52, 1186-1192.	2.5	2
8	A New Concept of an Air-Electrode Catalyst for Li2O2 Decomposition Using MnO2 Nanosheets on Rechargeable Li-O2 Batteries. Electrochimica Acta, 2017, 252, 192-199.	5.2	9
9	Preparation of Au nano-particle dispersed water solution without surfactant for surface-enhanced Raman scattering platform. Molecular Crystals and Liquid Crystals, 2017, 653, 137-143.	0.9	10
10	Electrochemical oxidation of ammonia by multi-wall-carbon-nanotube-supported Pt shell–Ir core nanoparticles synthesized by an improved Cu short circuit deposition method. Journal of Electroanalytical Chemistry, 2016, 762, 29-36.	3.8	18
11	Synthesis and Application of Carbon Nanotubes to Glucose Biofuel Cell with Glucose Oxidase andp-Benzoquinone. Journal of the Electrochemical Society, 2015, 162, F1482-F1486.	2.9	5
12	A simple biofuel cell cathode with human red blood cells as electrocatalysts for oxygen reduction reaction. Biosensors and Bioelectronics, 2014, 55, 14-18.	10.1	21
13	Synthesis of multiwall carbon nanotube-supported platinum catalysts by solution plasma processing for oxygen reduction in polymer electrolyte fuel cells. Electrochimica Acta, 2014, 146, 73-78.	5.2	23
14	Oxygen Reduction Catalytic Activity of Hollandite-Type Manganese Oxides. Key Engineering Materials, 2013, 566, 253-257.	0.4	1
15	Dissolution Rate of Noble Metals for Electrochemical Recycle in Polymer Electrolyte Fuel Cells. Electrochemistry, 2012, 80, 898-903.	1.4	8
16	Development of Oxygen Reduction Electrocatalysts Based on Manganese Oxides for AEMFCs. ECS Transactions, 2011, 41, 2185-2192.	0.5	4
17	New Oxygen Reduction Electrocatalysts Based on Oxide Nanosheet Materials. ECS Transactions, 2009, 16, 97-105.	0.5	2
18	Electrocatalytic Activity of the Pyrochlores Ln2M2O7â^'δ (LnÂ=ÂLanthanoids) for Oxygen Reduction Reaction. Topics in Catalysis, 2009, 52, 896-902.	2.8	10

HIDENOBU SHIROISHI

#	Article	IF	CITATIONS
19	Oxygen Reduction Electrode Properties of Manganese Oxide Nanosheet-Based Materials. Topics in Catalysis, 2009, 52, 903-911.	2.8	12
20	Proton conductivity and microstructures of the core-shell type solid electrolytes in the MO2-In2O3-P2O5 (MTi, Sn, Zr) systems. Solid State Ionics, 2009, 180, 569-574.	2.7	7
21	Electrocatalytic O2 Reduction Properties of Pyrochlore-Type Oxides for Alkaline DAFCs. ECS Transactions, 2008, 16, 891-900.	0.5	4
22	Oxygen Reduction Electrode Properties of Pyrochlores Ln ₂ Ru ₂ O _{7-δ} (Ln=Pr, Nd, Sm) in Aqueous Solutions. Key Engineering Materials, 2007, 350, 167-170.	0.4	6
23	Effects of the Substitution of Î'-Site Ion on Oxygen Reduction Electrode Properties of Pb ₂ Ru ₂ O _{7- δ} in Aqueous Solutions. Key Engineering Materials, 2007, 350, 171-174.	0.4	5
24	PROTON CONDUCTING SOLID ELECTROLYTES BASED ON DIPHOSPHATES. Phosphorus Research Bulletin, 2007, 21, 31-37.	0.6	13
25	Passive micro tubular direct formic acid fuel cells (DFAFCs) with chemically assembled Pd anode nano-catalysts on polymer electrolytes. Electrochimica Acta, 2007, 53, 59-65.	5.2	15
26	High CO Tolerance ofN,N-Ethylenebis(salicylideneaminato)oxovanadium(IV) as a Cocatalyst to Pt for the Anode of Reformate Fuel Cells. Chemistry of Materials, 2006, 18, 4505-4512.	6.7	14
27	Effect of cobalt bis(dicarbollides) on electrochemical oxygen reduction on Pt electrode in methanol–acid solution. Electrochimica Acta, 2006, 51, 1225-1234.	5.2	6
28	Study of adsorbed water on Pt during methanol oxidation by ATR-SEIRAS (surface-enhanced infrared) Tj ETQq0 () 0 rgBT /C)verlock 10 Tf
29	New CO tolerant electro-catalysts exceeding Pt–Ru for the anode of fuel cells. Chemical Communications, 2005, , 1212-1214.	4.1	19
30	Mechanism of Selective Oxygen Reduction on Platinum by 2,2â€~-Bipyridine in the Presence of Methanol. Langmuir, 2005, 21, 3037-3043.	3.5	3
31	Quasi-solid medium for photoinduced charge separation. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 161, 119-124.	3.9	5
32	Effect of Additives on Electrochemical Reduction of Oxygen in the Presence of Methanol. Chemistry Letters, 2004, 33, 792-793.	1.3	4
33	Open-Source Electrochemical Measurement System Equipped with Macro Language for Successive Measurements. Journal of Computer Chemistry Japan, 2004, 3, 71-76.	0.1	6
34	New Quasi-solid Materials as a Medium for Photochemical Reactions. Journal of Physical Chemistry A, 2003, 107, 5523-5527.	2.5	11
35	Molecular Reactor for Solution Chemistry. Chemistry Letters, 2002, 31, 530-531.	1.3	24
36	Visualization of Electrochemical Measurements under Finite Conditions using JAVA and Its Application for Assisted Learning (2). Journal of Chemical Software, 2002, 8, 41-46.	0.2	2

HIDENOBU SHIROISHI

#	Article	IF	CITATIONS
37	Photoinduced charge separation at polymer–solution interface. Journal of Molecular Catalysis A, 2002, 187, 47-54.	4.8	3
38	Temperature effect on charge transport in a polymer membrane with dispersed [Ru(bpy)3]2+ analogues as studied by spectroelectrochemical methods. Journal of Electroanalytical Chemistry, 2002, 536, 145-150.	3.8	1
39	Development of Analyzer for Photoluminescence Quenching in a Solid Matrix Journal of Computer Chemistry Japan, 2002, 1, 37-46.	0.1	3
40	Development of Electrochemical Analyzer for Polymer-Coated Electrode. Journal of Computer Chemistry Japan, 2002, 1, 65-72.	0.1	4
41	Reaction of 5,8-Diphenyl-5,8-dihydroanthra[1,9-bc:4,10-b'c']diquinoline or its Endoperoxide with Trifluoroacetic Acid Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2001, 14, 239-243.	0.3	3
42	Activity analysis of trans-[RuCl2(NH3)4]+ incorporated into Nafion membrane for water oxidation catalyst. Journal of Molecular Catalysis A, 2001, 169, 269-273.	4.8	3
43	Analysis of charge hopping between redox center molecules in a polymer membrane based on percolation theory. Polymers for Advanced Technologies, 2001, 12, 237-243.	3.2	8
44	Electrocatalytic water oxidation using Ru moieties incorporated into a Nafion® coated electrode. Journal of Electroanalytical Chemistry, 2001, 502, 132-137.	3.8	4
45	Visualization of Electrochemical Behavior under Finite Conditions Using JAVA and Its Application for Assisted Learning Journal of Chemical Software, 2001, 7, 145-152.	0.2	4
46	Sensitization of TiO2 particles by dyes to achieve H2 evolution by visible light. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 136, 157-161.	3.9	102
47	Catalytic water oxidation using chemically generated Ru(bpy)33+ oxidant. Journal of Molecular Catalysis A, 1999, 144, 389-395.	4.8	2
48	Oxygen Reduction Electrode Properties of Oxide Nanosheet-Based Materials. Key Engineering Materials, 0, 388, 73-76.	0.4	2
49	A Study of Intermediate Temperature Proton-Conductive Phosphate Electrolytes. Key Engineering Materials, 0, 388, 93-96.	0.4	2
50	Shell-Core Type Proton Conducting TiP ₂ O ₇ -Based Solid Electrolytes. Key Engineering Materials, 0, 388, 57-60.	0.4	9
51	Basic Research of Water Photolysis Using Pyrochlore Oxides. Key Engineering Materials, 0, 388, 297-300.	0.4	1
52	Oxygen Reduction Reaction Activity of Pyrochlore Oxide Electrocatalysts Prepared by Precipitation Method. Key Engineering Materials, 0, 421-422, 479-482.	0.4	1
53	Proton Conducting Electrolytes Synthesized with Diammonium Hydrogen Phosphate. Key Engineering Materials, 0, 421-422, 471-474.	0.4	1
54	Electrocatalytic Activities of Trirutiles Based on MTaO ₆ (M=Co, Ni, Mg) for Oxygen Reduction Reaction. Key Engineering Materials, 0, 421-422, 459-462.	0.4	1

#	Article	IF	CITATIONS
55	Performance of Intermediate Temperature Fuel Cells with Proton Conducting Electrolytes Synthesized with Diammonium Hydrogen Phosphate (1). Key Engineering Materials, 0, 485, 145-148.	0.4	0