Xiongfeng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6913037/publications.pdf

Version: 2024-02-01

53751 39638 9,090 105 45 94 citations h-index g-index papers 107 107 107 3244 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Decoy State Quantum Key Distribution. Physical Review Letters, 2005, 94, 230504.	2.9	1,658
2	Practical decoy state for quantum key distribution. Physical Review A, 2005, 72, .	1.0	785
3	Secure quantum key distribution with realistic devices. Reviews of Modern Physics, 2020, 92, .	16.4	733
4	Experimental Measurement-Device-Independent Quantum Key Distribution. Physical Review Letters, 2013, 111, 130502.	2.9	344
5	Intrinsic randomness as a measure of quantum coherence. Physical Review A, 2015, 92, .	1.0	320
6	Experimental Quantum Key Distribution with Decoy States. Physical Review Letters, 2006, 96, 070502.	2.9	292
7	Quantum random number generation. Npj Quantum Information, 2016, 2, .	2.8	233
8	Measurement-Device-Independent Quantum Key Distribution over 200Âkm. Physical Review Letters, 2014, 113, 190501.	2.9	220
9	Quantum key distribution with entangled photon sources. Physical Review A, 2007, 76, .	1.0	185
10	Alternative schemes for measurement-device-independent quantum key distribution. Physical Review A, 2012, 86, .	1.0	183
11	Phase-Matching Quantum Key Distribution. Physical Review X, 2018, 8, .	2.8	171
12	Statistical fluctuation analysis for measurement-device-independent quantum key distribution. Physical Review A, 2012, 86, .	1.0	170
13	Ultrafast quantum random number generation based on quantum phase fluctuations. Optics Express, 2012, 20, 12366.	1.7	158
14	Device-independent quantum random-number generation. Nature, 2018, 562, 548-551.	13.7	154
15	Postprocessing for quantum random-number generators: Entropy evaluation and randomness extraction. Physical Review A, 2013, 87, .	1.0	153
16	Practical issues in quantum-key-distribution postprocessing. Physical Review A, 2010, 81, .	1.0	139
17	Challenging local realism with human choices. Nature, 2018, 557, 212-216.	13.7	136
18	Implementation of quantum key distribution surpassing the linear rate-transmittance bound. Nature Photonics, 2020, 14, 422-425.	15.6	130

#	Article	IF	CITATIONS
19	Measurement-Device-Independent Quantum Key Distribution over Untrustful Metropolitan Network. Physical Review X, 2016, 6, .	2.8	120
20	Source attack of decoy-state quantum key distribution using phase information. Physical Review A, 2013, 88, .	1.0	100
21	Improved key-rate bounds for practical decoy-state quantum-key-distribution systems. Physical Review A, 2017, 95, .	1.0	100
22	Practical and fast quantum random number generation based on photon arrival time relative to external reference. Applied Physics Letters, 2014 , 104 , .	1.5	87
23	High-Speed Device-Independent Quantum Random Number Generation without a Detection Loophole. Physical Review Letters, 2018, 120, 010503.	2.9	85
24	Experimental Passive Round-Robin Differential Phase-Shift Quantum Key Distribution. Physical Review Letters, 2015, 114, 180502.	2.9	82
25	Source-Independent Quantum Random Number Generation. Physical Review X, 2016, 6, .	2.8	81
26	Memory-assisted measurement-device-independent quantum key distribution. New Journal of Physics, 2014, 16, 043005.	1.2	72
27	Loss-tolerant measurement-device-independent quantum random number generation. New Journal of Physics, 2015, 17, 125011.	1.2	68
28	Direct counterfactual communication via quantum Zeno effect. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4920-4924.	3.3	68
29	Experimental Blind Quantum Computing for a Classical Client. Physical Review Letters, 2017, 119, 050503.	2.9	68
30	Passive decoy-state quantum key distribution with practical light sources. Physical Review A, 2010, 81, .	1.0	67
31	Discrete-phase-randomized coherent state source and its application in quantum key distribution. New Journal of Physics, 2015, 17, 053014.	1.2	67
32	Secret Sharing of a Quantum State. Physical Review Letters, 2016, 117, 030501.	2.9	65
33	One-Shot Coherence Dilution. Physical Review Letters, 2018, 120, 070403.	2.9	63
34	Quantum key distribution with triggering parametric down-conversion sources. New Journal of Physics, 2008, 10, 073018.	1.2	59
35	Test of Local Realism into the Past without Detection and Locality Loopholes. Physical Review Letters, 2018, 121, 080404.	2.9	58
36	Measurement-device-independent quantum key distribution with uncharacterized qubit sources. Physical Review A, 2013, 88, .	1.0	57

#	Article	IF	CITATIONS
37	Non-Poissonian statistics from Poissonian light sources with application to passive decoy state quantum key distribution. Optics Letters, 2009, 34, 3238.	1.7	56
38	Efficient heralding of photonic qubits with applications to device-independent quantum key distribution. Physical Review A, $2011,84,\ldots$	1.0	56
39	Decoy-state quantum key distribution with two-way classical postprocessing. Physical Review A, 2006, 74, .	1.0	55
40	Unconditional security proof of a deterministic quantum key distribution with a two-way quantum channel. Physical Review A, 2011, 84, .	1.0	54
41	Quantum uncertainty relation using coherence. Physical Review A, 2017, 96, .	1.0	54
42	Mismatched-basis statistics enable quantum key distribution with uncharacterized qubit sources. Physical Review A, $2014, 90, .$	1.0	53
43	Experimental measurement-device-independent quantum digital signatures over a metropolitan network. Physical Review A, 2017, 95, .	1.0	52
44	Observation of ten-photon entanglement using thin BiB_3O_6 crystals. Optica, 2017, 4, 77.	4.8	52
45	Space-to-Ground Quantum Key Distribution Using a Small-Sized Payload on Tiangong-2 Space Lab. Chinese Physics Letters, 2017, 34, 090302.	1.3	48
46	Experimental measurement-device-independent quantum random-number generation. Physical Review A, 2016, 94, .	1.0	46
47	Implementation of a Measurement-Device-Independent Entanglement Witness. Physical Review Letters, 2014, 112, 140506.	2.9	44
48	Note: Fully integrated 3.2 Gbps quantum random number generator with real-time extraction. Review of Scientific Instruments, 2016, 87, 076102.	0.6	41
49	Experimental round-robin differential phase-shift quantum key distribution. Physical Review A, 2016, 93, .	1.0	40
50	Implementation of a 46-node quantum metropolitan area network. Npj Quantum Information, 2021, 7, .	2.8	39
51	Decoy-state quantum key distribution with biased basis choice. Scientific Reports, 2013, 3, 2453.	1.6	35
52	Randomness generation based on spontaneous emissions of lasers. Physical Review A, 2015, 91, .	1.0	35
53	Symmetry-Protected Privacy: Beating the Rate-Distance Linear Bound Over a Noisy Channel. Physical Review Applied, 2020, 13, .	1.5	35
54	Entanglement-based quantum key distribution with biased basis choice via free space. Optics Express, 2013, 21, 27260.	1.7	33

#	Article	IF	CITATIONS
55	Quantum key distribution with dual detectors. Physical Review A, 2007, 75, .	1.0	32
56	Experimental quantum-key distribution with an untrusted source. Optics Letters, 2008, 33, 2077.	1.7	31
57	Universally composable and customizable post-processing for practical quantum key distribution. Computers and Security, 2011, 30, 172-177.	4.0	30
58	Field Test of Measurement-Device-Independent Quantum Key Distribution. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 116-122.	1.9	30
59	Detecting multipartite entanglement structure with minimal resources. Npj Quantum Information, 2019, 5, .	2.8	29
60	Experimental Realization of Device-Independent Quantum Randomness Expansion. Physical Review Letters, 2021, 126, 050503.	2.9	29
61	Operational interpretation of coherence in quantum key distribution. Physical Review A, 2019, 99, .	1.0	27
62	Quantum key distribution with delayed privacy amplification and its application to the security proof of a two-way deterministic protocol. Physical Review A, 2012, 85, .	1.0	26
63	Entanglement Structure: Entanglement Partitioning in Multipartite Systems and Its Experimental Detection Using Optimizable Witnesses. Physical Review X, 2018, 8, .	2.8	23
64	Experimental passive decoy-state quantum key distribution. Laser Physics Letters, 2014, 11, 085202.	0.6	22
65	Experimental exploration of five-qubit quantum error-correcting code with superconducting qubits. National Science Review, 2022, 9, nwab011.	4.6	22
66	Phase-Matching Quantum Cryptographic Conferencing. Physical Review Applied, 2020, 14, .	1.5	21
67	Entangled quantum key distribution with a biased basis choice. New Journal of Physics, 2009, 11, 045025.	1.2	20
68	Simulating single photons with realistic photon sources. Physical Review A, 2016, 94, .	1.0	20
69	Practical round-robin differential-phase-shift quantum key distribution. New Journal of Physics, 2017, 19, 033013.	1.2	20
70	Coherence as a resource for source-independent quantum random-number generation. Physical Review A, 2019, 99, .	1.0	20
71	Security of quantum key distribution using a simplified trusted relay. Physical Review A, 2015, 91, .	1.0	19
72	Randomness requirement on the Clauser-Horne-Shimony-Holt Bell test in the multiple-run scenario. Physical Review A, 2015, 91, .	1.0	19

#	Article	IF	CITATIONS
73	Quantum random number generation with uncharacterized laser and sunlight. Npj Quantum Information, 2019, 5 , .	2.8	19
74	Experimental Quantum Randomness Processing Using Superconducting Qubits. Physical Review Letters, 2016, 117, 010502.	2.9	18
75	Random Number Generation with Cosmic Photons. Physical Review Letters, 2017, 118, 140402.	2.9	18
76	Passive sources for the Bennett-Brassard 1984 quantum-key-distribution protocol with practical signals. Physical Review A, 2010, 82, .	1.0	17
77	Experimental quantum data locking. Physical Review A, 2016, 94, .	1.0	16
78	Entanglement swapping with independent sources over an optical-fiber network. Physical Review A, 2017, 95, .	1.0	16
79	Quantum Network: Security Assessment and Key Management. IEEE/ACM Transactions on Networking, 2022, 30, 1328-1339.	2.6	16
80	Efficient measurement-device-independent detection of multipartite entanglement structure. Physical Review A, 2016, 94, .	1.0	13
81	Quantum Coherence and Intrinsic Randomness. Advanced Quantum Technologies, 2019, 2, 1900053.	1.8	13
82	Quantum Coherence Witness with Untrusted Measurement Devices. Physical Review Letters, 2019, 123, 090502.	2.9	13
83	Reference-Frame-Independent Design of Phase-Matching Quantum Key Distribution. Physical Review Applied, 2021, 16, .	1.5	12
84	Unification of nonclassicality measures in interferometry. Physical Review A, 2018, 97, .	1.0	11
85	Randomness quantification of coherent detection. Physical Review A, 2018, 98, .	1.0	10
86	Decomposition of a symmetric multipartite observable. Physical Review A, 2019, 99, .	1.0	10
87	Randomness Expansion Secured by Quantum Contextuality. Physical Review Applied, 2020, 13, .	1.5	10
88	Reliable and robust entanglement witness. Physical Review A, 2016, 93, .	1.0	9
89	Quantum key distribution and beyond: introduction. Journal of the Optical Society of America B: Optical Physics, 2019, 36, QKD1.	0.9	9
90	Unconditional security at a low cost. Physical Review A, 2006, 74, .	1.0	8

#	Article	IF	CITATIONS
91	Unification of quantum resources in distributed scenarios. Physical Review A, 2019, 99, .	1.0	8
92	Upper bounds for the secure key rate of the decoy-state quantum key distribution. Physical Review A, $2009, 79, .$	1.0	7
93	Performance of device-independent quantum key distribution. Physical Review A, 2016, 94, .	1.0	7
94	Clauser-Horne Bell test with imperfect random inputs. Physical Review A, 2015, 92, .	1.0	6
95	Polynomial measure of coherence. New Journal of Physics, 2017, 19, 123033.	1.2	6
96	Efficient and robust detection of multipartite Greenberger-Horne-Zeilinger-like states. Physical Review A, 2019, 99, .	1.0	6
97	Efficient entanglement generation and detection of generalized stabilizer states. Physical Review A, 2021, 103, .	1.0	4
98	Experimental measurement-dependent local Bell test with human free will. Physical Review A, 2019, 99, .	1.0	2
99	Experimental random-party entanglement distillation via weak measurement. Physical Review Research, 2020, 2, .	1.3	2
100	Preface: Quantum coherence. Journal of Physics A: Mathematical and Theoretical, 2018, 51, 410301.	0.7	1
101	Implementation of repeaterless quantum key distribution over 502 km fibers. , 2020, , .		1
102	Dual detectors scheme in practical quantum key distribution systems., 2007,,.		0
103	Quantum hacking: attacking practical quantum key distribution systems. Proceedings of SPIE, 2007, , .	0.8	0
104	Improve the efficiency of a practical quantum key distribution system. , 2007, , .		0
105	Security Level and Information Flow in a Quantum Key Distribution Network. , 2018, , .		O