David Masopust

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6912535/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The precursors of CD8+ tissue resident memory T cells: from lymphoid organs to infected tissues. Nature Reviews Immunology, 2022, 22, 283-293.	22.7	85
2	Functional virus-specific memory T cells survey glioblastoma. Cancer Immunology, Immunotherapy, 2022, 71, 1863-1875.	4.2	15
3	Lung-resident memory B cells established after pulmonary influenza infection display distinct transcriptional and phenotypic profiles. Science Immunology, 2022, 7, eabf5314.	11.9	38
4	Natural rodent model of viral transmission reveals biological features of virus population dynamics. Journal of Experimental Medicine, 2022, 219, .	8.5	18
5	Parabiosis in Mice to Study Tissue Residency of Immune Cells. Current Protocols, 2022, 2, .	2.9	5
6	Competition for Active TGFÎ ² Cytokine Allows for Selective Retention of Antigen-Specific Tissue- Resident Memory T Cells in the Epidermal Niche. Immunity, 2021, 54, 84-98.e5.	14.3	68
7	T Cell Memory: Understanding COVID-19. Immunity, 2021, 54, 14-18.	14.3	127
8	Cutting Edge: Mouse SARS-CoV-2 Epitope Reveals Infection and Vaccine-Elicited CD8 T Cell Responses. Journal of Immunology, 2021, 206, 931-935.	0.8	36
9	Expansible residence decentralizes immune homeostasis. Nature, 2021, 592, 457-462.	27.8	74
10	Cutting Edge: Nucleocapsid Vaccine Elicits Spike-Independent SARS-CoV-2 Protective Immunity. Journal of Immunology, 2021, 207, 376-379.	0.8	124
11	Mice with diverse microbial exposure histories as a model for preclinical vaccine testing. Cell Host and Microbe, 2021, 29, 1815-1827.e6.	11.0	37
12	MO064TISSUE-RESIDENT B CELLS DETERMINE SUSCEPTIBILITY TO URINARY TRACT INFECTION BY ORCHESTRATING MACROPHAGE POLARISATION. Nephrology Dialysis Transplantation, 2020, 35, .	0.7	0
13	Retrograde migration supplies resident memory T cells to lung-draining LN after influenza infection. Journal of Experimental Medicine, 2020, 217, .	8.5	81
14	T cell-inducing vaccine durably prevents mucosal SHIV infection even with lower neutralizing antibody titers. Nature Medicine, 2020, 26, 932-940.	30.7	124
15	New Insights into the Immune System Using Dirty Mice. Journal of Immunology, 2020, 205, 3-11.	0.8	59
16	Neutrophils Recirculate through Lymph Nodes to Survey Tissues for Pathogens. Journal of Immunology, 2020, 204, 2552-2561.	0.8	36
17	PD-1+ stemlike CD8 T cells are resident in lymphoid tissues during persistent LCMV infection. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4292-4299.	7.1	85
18	Developmental plasticity allows outside-in immune responses by resident memory T cells. Nature Immunology, 2020, 21, 412-421.	14.5	191

#	Article	IF	CITATIONS
19	Integrating resident memory into T cell differentiation models. Current Opinion in Immunology, 2020, 63, 35-42.	5.5	29
20	Microbial Exposure Enhances Immunity to Pathogens Recognized by TLR2 but Increases Susceptibility to Cytokine Storm through TLR4 Sensitization. Cell Reports, 2019, 28, 1729-1743.e5.	6.4	74
21	The Functional Requirement for CD69 in Establishment of Resident Memory CD8+ T Cells Varies with Tissue Location. Journal of Immunology, 2019, 203, 946-955.	0.8	118
22	The Impact of TCR Signal Strength on Resident Memory T Cell Formation during Influenza Virus Infection. Journal of Immunology, 2019, 203, 936-945.	0.8	31
23	Robust Iterative Stimulation with Self-Antigens Overcomes CD8+ T Cell Tolerance to Self- and Tumor Antigens. Cell Reports, 2019, 28, 3092-3104.e5.	6.4	18
24	Virus-specific memory T cells populate tumors and can be repurposed for tumor immunotherapy. Nature Communications, 2019, 10, 567.	12.8	193
25	CD4+ resident memory T cells dominate immunosurveillance and orchestrate local recall responses. Journal of Experimental Medicine, 2019, 216, 1214-1229.	8.5	149
26	Interstitial Migration of CD8αβ T Cells in the Small Intestine Is Dynamic and Is Dictated by Environmental Cues. Cell Reports, 2019, 26, 2859-2867.e4.	6.4	19
27	Keratinocyte-Mediated Activation of the Cytokine TGF-β Maintains Skin Recirculating Memory CD8+ T Cells. Immunity, 2019, 50, 1249-1261.e5.	14.3	69
28	Tissue-Resident T Cells and Other Resident Leukocytes. Annual Review of Immunology, 2019, 37, 521-546.	21.8	410
29	Universal Principled Review: A Community-Driven Method to Improve Peer Review. Cell, 2019, 179, 1441-1445.	28.9	6
30	Vaccine induction of antibodies and tissue-resident CD8+ T cells enhances protection against mucosal SHIV-infection in young macaques. JCI Insight, 2019, 4, .	5.0	50
31	T Cells in Nonlymphoid Tissues Give Rise to Lymph-Node-Resident Memory T Cells. Immunity, 2018, 48, 327-338.e5.	14.3	191
32	Understanding Subset Diversity in T Cell Memory. Immunity, 2018, 48, 214-226.	14.3	389
33	Is a Human CD8 T-Cell Vaccine Possible, and if So, What Would It Take?. Cold Spring Harbor Perspectives in Biology, 2018, 10, a028910.	5.5	13
34	Intravital mucosal imaging of CD8+ resident memory T cells shows tissue-autonomous recall responses that amplify secondary memory. Nature Immunology, 2018, 19, 173-182.	14.5	220
35	What Is the Predictive Value of Animal Models for Vaccine Efficacy in Humans?. Cold Spring Harbor Perspectives in Biology, 2018, 10, a029132.	5.5	15
36	US Immigration Westernizes the Human Gut Microbiome. Cell, 2018, 175, 962-972.e10.	28.9	511

#	Article	IF	CITATIONS
37	Identification and characterization of HIV-specific resident memory CD8 ⁺ T cells in human lymphoid tissue. Science Immunology, 2018, 3, .	11.9	116
38	The purinergic receptor P2RX7 directs metabolic fitness of long-lived memory CD8+ T cells. Nature, 2018, 559, 264-268.	27.8	209
39	Cutting Edge: Evidence for Nonvascular Route of Visceral Organ Immunosurveillance by T Cells. Journal of Immunology, 2018, 201, 337-342.	0.8	2
40	Tissue-resident memory T cells live off the fat of the land. Cell Research, 2017, 27, 847-848.	12.0	5
41	Tissue resident memory T cells and viral immunity. Current Opinion in Virology, 2017, 22, 44-50.	5.4	122
42	Of Mice, Dirty Mice, and Men: Using Mice To Understand Human Immunology. Journal of Immunology, 2017, 199, 383-388.	0.8	197
43	Stable engraftment of human microbiota into mice with a single oral gavage following antibiotic conditioning. Microbiome, 2017, 5, 87.	11.1	138
44	Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature, 2016, 532, 512-516.	27.8	848
45	Sequential Infection with Common Pathogens Promotes Human-like Immune Gene Expression and Altered Vaccine Response. Cell Host and Microbe, 2016, 19, 713-719.	11.0	189
46	Simian Immunodeficiency Virus-Producing Cells in Follicles Are Partially Suppressed by CD8 ⁺ Cells <i>In Vivo</i> . Journal of Virology, 2016, 90, 11168-11180.	3.4	74
47	Resident memory T cells are a Notch above the rest. Nature Immunology, 2016, 17, 1337-1338.	14.5	8
48	IL-15–Independent Maintenance of Tissue-Resident and Boosted Effector Memory CD8 T Cells. Journal of Immunology, 2016, 196, 3920-3926.	0.8	136
49	Stromal cells control the epithelial residence of DCs and memory T cells by regulated activation of TGF-l². Nature Immunology, 2016, 17, 414-421.	14.5	190
50	Interleukin-2-Dependent Allergen-Specific Tissue-Resident Memory Cells Drive Asthma. Immunity, 2016, 44, 155-166.	14.3	223
51	NK cells and CD8+ T cells cooperate to improve therapeutic responses in melanoma treated with interleukin-2 (IL-2) and CTLA-4 blockade. , 2015, 3, 18.		51
52	Lymphocytic choriomeningitis virus persistence promotes effector-like memory differentiation and enhances mucosal T cell distribution. Journal of Leukocyte Biology, 2015, 97, 217-225.	3.3	48
53	Quantifying Memory CD8ÂT Cells Reveals Regionalization of Immunosurveillance. Cell, 2015, 161, 737-749.	28.9	584
54	Infected Cells Call Their Killers to the Scene of the Crime. Immunity, 2015, 42, 399-401.	14.3	4

4

#	Article	IF	CITATIONS
55	Memory and Infection. , 2014, , 121-130.		0
56	Intravascular staining for discrimination of vascular and tissue leukocytes. Nature Protocols, 2014, 9, 209-222.	12.0	612
57	Identification of a resident Tâ€cell memory core transcriptional signature. Immunology and Cell Biology, 2014, 92, 8-9.	2.3	16
58	Tissue-Resident Memory T Cells. Immunity, 2014, 41, 886-897.	14.3	810
59	Editorial: Pulmonary resident memory CD8 T cells: here today, gone tomorrow. Journal of Leukocyte Biology, 2014, 95, 199-201.	3.3	18
60	Cutting Edge: Resident Memory CD8 T Cells Occupy Frontline Niches in Secondary Lymphoid Organs. Journal of Immunology, 2014, 192, 2961-2964.	0.8	178
61	CpG-mediated modulation of MDSC contributes to the efficacy of Ad5-TRAIL therapy against renal cell carcinoma. Cancer Immunology, Immunotherapy, 2014, 63, 1213-1227.	4.2	32
62	Cutting Edge: Control of <i>Mycobacterium tuberculosis</i> Infection by a Subset of Lung Parenchyma–Homing CD4 T Cells. Journal of Immunology, 2014, 192, 2965-2969.	0.8	272
63	Resident memory CD8 T cells trigger protective innate and adaptive immune responses. Science, 2014, 346, 98-101.	12.6	557
64	SnapShot: Resident Memory T Cells. Cell, 2014, 157, 1488-1488.e1.	28.9	33
65	Pillars article: preferential localization of effector memory cells in nonlymphoid tissue. Science. 2001. 291: 2413-2417. Journal of Immunology, 2014, 192, 845-9.	0.8	6
66	Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells. Nature Immunology, 2013, 14, 1285-1293.	14.5	621
67	Preexisting High Frequencies of Memory CD8+ T Cells Favor Rapid Memory Differentiation and Preservation of Proliferative Potential upon Boosting. Immunity, 2013, 39, 171-183.	14.3	81
68	Sensing and alarm function of resident memory CD8+ T cells. Nature Immunology, 2013, 14, 509-513.	14.5	525
69	The integration of T cell migration, differentiation and function. Nature Reviews Immunology, 2013, 13, 309-320.	22.7	504
70	Primary Epstein-Barr virus infection does not erode preexisting CD8+ T cell memory in humans. Journal of Experimental Medicine, 2012, 209, 471-478.	8.5	62
71	Cutting Edge: Intravascular Staining Redefines Lung CD8 T Cell Responses. Journal of Immunology, 2012, 189, 2702-2706.	0.8	275
72	Antigen-Independent Differentiation and Maintenance of Effector-like Resident Memory T Cells in Tissues. Journal of Immunology, 2012, 188, 4866-4875.	0.8	537

#	Article	IF	CITATIONS
73	Hidden Memories: Frontline Memory T Cells and Early Pathogen Interception. Journal of Immunology, 2012, 188, 5811-5817.	0.8	126
74	Infection induces friendly fire. Nature, 2012, 490, 41-43.	27.8	1
75	Phenotype, Function, and Gene Expression Profiles of Programmed Death-1hi CD8 T Cells in Healthy Human Adults. Journal of Immunology, 2011, 186, 4200-4212.	0.8	211
76	Dynamic T cell migration program provides resident memory within intestinal epithelium. Journal of Experimental Medicine, 2010, 207, 553-564.	8.5	514
77	Tâ€cell reconstitution without Tâ€cell immunopathology in two models of Tâ€cellâ€mediated tissue destruction. Immunology, 2009, 128, 164-171.	4.4	14
78	Memory CD8 T-cell compartment grows in size with immunological experience. Nature, 2009, 457, 196-199.	27.8	204
79	Vezys et al. reply. Nature, 2009, 459, E4-E4.	27.8	1
80	The road not taken: memory T cell fate 'decisions'. Nature Immunology, 2009, 10, 369-370.	14.5	13
81	Diversity in T Cell Memory: An Embarrassment of Riches. Immunity, 2009, 31, 859-871.	14.3	344
82	Global genomic analysis reveals rapid control of a robust innate response in SIV-infected sooty mangabeys. Journal of Clinical Investigation, 2009, 119, 3556-72.	8.2	351
83	Human Effector and Memory CD8+ T Cell Responses toÂSmallpox and Yellow Fever Vaccines. Immunity, 2008, 28, 710-722.	14.3	541
84	T cell migration and memory differentiation within the mouse intestinal mucosa in response to infection. FASEB Journal, 2008, 22, 855.6.	0.5	0
85	PDâ€l negatively regulates CD8 T cellâ€mediated mucosal autoimmunity. FASEB Journal, 2008, 22, 852.4.	0.5	0
86	Strength of Stimulus and Clonal Competition Impact the Rate of Memory CD8 T Cell Differentiation. Journal of Immunology, 2007, 179, 6704-6714.	0.8	115
87	Normal Establishment of Virus-Specific Memory CD8 T Cell Pool following Primary Infection during Pregnancy. Journal of Immunology, 2007, 179, 4383-4389.	0.8	51
88	Liver-Infiltrating Lymphocytes in Chronic Human Hepatitis C Virus Infection Display an Exhausted Phenotype with High Levels of PD-1 and Low Levels of CD127 Expression. Journal of Virology, 2007, 81, 2545-2553.	3.4	431
89	Quantitating the Magnitude of the Lymphocytic Choriomeningitis Virus-Specific CD8 T-Cell Response: It Is Even Bigger than We Thought. Journal of Virology, 2007, 81, 2002-2011.	3.4	98
90	Analysis of CD8+ T cell-mediated anti-viral responses in mice with targeted deletions of the M1 or M5 muscarinic cholinergic receptors. Life Sciences, 2007, 80, 2330-2333.	4.3	11

#	Article	IF	CITATIONS
91	A brief history of CD8 T cells. European Journal of Immunology, 2007, 37, S103-S110.	2.9	42
92	Restoring function in exhausted CD8 T cells during chronic viral infection. Nature, 2006, 439, 682-687.	27.8	3,471
93	Evidence that a significant number of naive T cells enter non-lymphoid organs as part of a normal migratory pathway. European Journal of Immunology, 2006, 36, 1423-1433.	2.9	125
94	Stimulation History Dictates Memory CD8 T Cell Phenotype: Implications for Prime-Boost Vaccination. Journal of Immunology, 2006, 177, 831-839.	0.8	266
95	Continuous recruitment of naive T cells contributes to heterogeneity of antiviral CD8 T cells during persistent infection. Journal of Experimental Medicine, 2006, 203, 2263-2269.	8.5	169
96	Cutting Edge: Gut Microenvironment Promotes Differentiation of a Unique Memory CD8 T Cell Population. Journal of Immunology, 2006, 176, 2079-2083.	0.8	318
97	Activated Primary and Memory CD8 T Cells Migrate to Nonlymphoid Tissues Regardless of Site of Activation or Tissue of Origin. Journal of Immunology, 2004, 172, 4875-4882.	0.8	257
98	Reflections on CD8 T-Cell Activation and Memory. Immunologic Research, 2004, 29, 151-160.	2.9	50
99	The role of programming in memory T-cell development. Current Opinion in Immunology, 2004, 16, 217-225.	5.5	173
100	Generation and maintenance of immunological memory. Seminars in Immunology, 2004, 16, 323-333.	5.6	212
101	CD8 T-cell memory: the other half of the story. Microbes and Infection, 2003, 5, 221-226.	1.9	32
102	Lineage relationship and protective immunity of memory CD8 T cell subsets. Nature Immunology, 2003, 4, 225-234.	14.5	1,621
103	Essential Role for IL-2 in the Regulation of Antiviral Extralymphoid CD8 T Cell Responses. Journal of Immunology, 2002, 168, 5566-5572.	0.8	109
104	T cell immunity in lymphoid and non-lymphoid tissues. Current Opinion in Immunology, 2002, 14, 503-508.	5.5	108
105	Direct Analysis of the Dynamics of the Intestinal Mucosa CD8 T Cell Response to Systemic Virus Infection. Journal of Immunology, 2001, 166, 2348-2356.	0.8	136
106	A Critical Role for Cd40–Cd40 Ligand Interactions in Amplification of the Mucosal Cd8 T Cell Response. Journal of Experimental Medicine, 1999, 190, 1275-1284.	8.5	74