Kumud M Tripathi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6912462/publications.pdf

Version: 2024-02-01

65 4,893 40 63
papers citations h-index g-index

72 72 72 6211 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Activated Graphene-Based Carbons as Supercapacitor Electrodes with Macro- and Mesopores. ACS Nano, 2013, 7, 6899-6905.	7.3	776
2	Green synthesis of carbon quantum dots from lemon peel waste: applications in sensing and photocatalysis. RSC Advances, 2016, 6, 72423-72432.	1.7	336
3	Synthesis of Phase Transferable Graphene Sheets Using Ionic Liquid Polymers. ACS Nano, 2010, 4, 1612-1618.	7.3	226
4	Recent progress in micro-scale energy storage devices and future aspects. Journal of Materials Chemistry A, 2015, 3, 22507-22541.	5.2	169
5	Biomass-derived Carbon Quantum Dots for Visible-Light-Induced Photocatalysis and Label-Free Detection of Fe(III) and Ascorbic acid. Scientific Reports, 2019, 9, 15084.	1.6	161
6	Visible-light photocatalysis by carbon-nano-onion-functionalized ZnO tetrapods: degradation of 2,4-dinitrophenol and a plant-model-based ecological assessment. NPG Asia Materials, 2019, 11 , .	3.8	130
7	Recent advances in engineered graphene and composites for detection of volatile organic compounds (VOCs) and non-invasive diseases diagnosis. Carbon, 2016, 110, 97-129.	5.4	128
8	Green Fluorescent Onion-Like Carbon Nanoparticles from Flaxseed Oil for Visible Light Induced Photocatalytic Applications and Label-Free Detection of Al(III) Ions. ACS Sustainable Chemistry and Engineering, 2017, 5, 3982-3992.	3.2	123
9	Graphene-Based Aerogels Derived from Biomass for Energy Storage and Environmental Remediation. ACS Sustainable Chemistry and Engineering, 2019, 7, 3772-3782.	3.2	114
10	N, S, and P-Co-doped Carbon Quantum Dots: Intrinsic Peroxidase Activity in a Wide pH Range and Its Antibacterial Applications. ACS Biomaterials Science and Engineering, 2020, 6, 5527-5537.	2.6	109
11	Effective removal of copper ions from aqueous solution using base treated black tea waste. Ecological Engineering, 2014, 67, 127-133.	1.6	96
12	Sunlight-Induced Selective Photocatalytic Degradation of Methylene Blue in Bacterial Culture by Pollutant Soot Derived Nontoxic Graphene Nanosheets. ACS Sustainable Chemistry and Engineering, 2018, 6, 579-589.	3.2	96
13	Pollutant Soot for Pollutant Dye Degradation: Soluble Graphene Nanosheets for Visible Light Induced Photodegradation of Methylene Blue. ACS Sustainable Chemistry and Engineering, 2017, 5, 8860-8869.	3.2	90
14	Synthesis and characterization of magnetic biochar adsorbents for the removal of Cr(VI) and Acid orange 7 dye from aqueous solution. Environmental Science and Pollution Research, 2020, 27, 32874-32887.	2.7	90
15	High shear-induced exfoliation of graphite into high quality graphene by Taylor–Couette flow. RSC Advances, 2016, 6, 12003-12008.	1.7	83
16	Pollutant soot of diesel engine exhaust transformed to carbon dots for multicoloured imaging of E. coli and sensing cholesterol. RSC Advances, 2014, 4, 30100.	1.7	81
17	Activated Biomass-derived Graphene-based Carbons for Supercapacitors with High Energy and Power Density. Scientific Reports, 2018, 8, 1915.	1.6	79
18	From the traditional way of pyrolysis to tunable photoluminescent water soluble carbon nano-onions for cell imaging and selective sensing of glucose. RSC Advances, 2016, 6, 37319-37329.	1.7	76

#	Article	IF	CITATIONS
19	Soluble Graphene Nanosheets for the Sunlight-Induced Photodegradation of the Mixture of Dyes and its Environmental Assessment. Scientific Reports, 2019, 9, 2522.	1.6	74
20	Sustainable Changes in the Contents of Metallic Micronutrients in First Generation Gram Seeds Imposed by Carbon Nano-onions: Life Cycle Seed to Seed Study. ACS Sustainable Chemistry and Engineering, 2017, 5, 2906-2916.	3.2	73
21	Phenol-formaldehyde-resin-based activated carbons with controlled pore size distribution for high-performance supercapacitors. Chemical Engineering Journal, 2020, 379, 122332.	6.6	70
22	Multifunctional N-P-doped carbon dots for regulation of apoptosis and autophagy in B16F10 melanoma cancer cells and <i>in vitro</i> imaging applications. Theranostics, 2020, 10, 7841-7856.	4.6	70
23	Gram scale synthesis of green fluorescent water-soluble onion-like carbon nanoparticles from camphor and polystyrene foam. RSC Advances, 2014, 4, 5838.	1.7	63
24	Synthesis of clay-cellulose biocomposite for the removal of toxic metal ions from aqueous medium. Journal of Hazardous Materials, 2020, 381, 120871.	6.5	62
25	Sunlight-promoted photodegradation of Congo red by cadmium-sulfide decorated graphene aerogel. Chemosphere, 2022, 287, 132225.	4.2	62
26	Waterâ€Induced Formation, Characterization, and Photoluminescence of Carbon Nanotubeâ€Based Composites of Gadolinium(III) and Platinum(II) Dithiolenes. Chemistry - A European Journal, 2014, 20, 16657-16661.	1.7	60
27	Sustainable Feasibility of the Environmental Pollutant Soot to Few-Layer Photoluminescent Graphene Nanosheets for Multifunctional Applications. ACS Sustainable Chemistry and Engineering, 2016, 4, 6399-6408.	3.2	60
28	Bio-mass derived functionalized graphene aerogel: a sustainable approach for the removal of multiple organic dyes and their mixtures. New Journal of Chemistry, 2021, 45, 9073-9083.	1.4	60
29	Carbon nano-onions from waste oil for application in energy storage devices. New Journal of Chemistry, 2020, 44, 7369-7375.	1.4	57
30	Temperature dependent, shape variant synthesis of photoluminescent and biocompatible carbon nanostructures from almond husk for applications in dye removal. RSC Advances, 2016, 6, 29545-29553.	1.7	56
31	A Sustainable Graphene Aerogel Capable of the Adsorptive Elimination of Biogenic Amines and Bacteria from Soy Sauce and Highly Efficient Cell Proliferation. ACS Applied Materials & Emp; Interfaces, 2019, 11, 43949-43963.	4.0	55
32	Hybrid Films of Graphene and Carbon Nanotubes for High Performance Chemical and Temperature Sensing Applications. Small, 2015, 11, 3485-3493.	5.2	54
33	Sustainable Graphene Aerogel as an Ecofriendly Cell Growth Promoter and Highly Efficient Adsorbent for Histamine from Red Wine. ACS Applied Materials & Samp; Interfaces, 2019, 11, 18165-18177.	4.0	54
34	Water Soluble Fluorescent Carbon Nanodots from Biosource for Cells Imaging. Journal of Nanomaterials, 2017, 2017, 1-10.	1.5	53
35	Nano-carbon based sensors for bacterial detection and discrimination in clinical diagnosis: A junction between material science and biology. Applied Materials Today, 2020, 18, 100467.	2.3	52
36	Large-scale synthesis of soluble graphitic hollow carbon nanorods with tunable photoluminescence for the selective fluorescent detection of DNA. New Journal of Chemistry, 2016, 40, 1571-1579.	1.4	49

3

#	Article	IF	CITATIONS
37	Three-dimensionally assembled Graphene/α-MnO 2 nanowire hybrid hydrogels for high performance supercapacitors. Materials Research Bulletin, 2017, 96, 395-404.	2.7	49
38	Sustainable nitrogen-doped functionalized graphene nanosheets for visible-light-induced photocatalytic water splitting. Chemical Communications, 2020, 56, 6953-6956.	2.2	49
39	Recent advances in photocatalytic carbon-based materials for enhanced water splitting under visible-light irradiation. Energy Conversion and Management, 2022, 252, 115133.	4.4	43
40	Nitrogen-doped fluorescent graphene nanosheets as visible-light-driven photocatalysts for dye degradation and selective sensing of ascorbic acid. New Journal of Chemistry, 2019, 43, 14575-14583.	1.4	41
41	Sunlight-Induced Photochemical Degradation of Methylene Blue by Water-Soluble Carbon Nanorods. International Journal of Photoenergy, 2016, 2016, 1-8.	1.4	40
42	Green carbon nanostructured quantum resistive sensors to detect volatile biomarkers. Sustainable Materials and Technologies, 2018, 16, 1-11.	1.7	40
43	Prospects of nano-carbons as emerging catalysts for enzyme-mimetic applications. Materials Advances, 2022, 3, 3101-3122.	2.6	39
44	Nanospheres of copper(iii) 1,2-dicarbomethoxy-1,2-dithiolate and its composite with water soluble carbon nanotubes. New Journal of Chemistry, 2013, 37, 2708.	1.4	38
45	A simple one-step hydrothermal route towards water solubilization of carbon quantum dots from soya-nuggets for imaging applications. RSC Advances, 2015, 5, 87528-87534.	1.7	38
46	Exploration of nano carbons in relevance to plant systems. New Journal of Chemistry, 2018, 42, 16411-16427.	1.4	38
47	Ionic liquid-assisted microwave reduction of graphite oxide for supercapacitors. RSC Advances, 2012, 2, 8808.	1.7	37
48	P ₂ O ₅ Assisted Green Synthesis of Multicolor Fluorescent Water Soluble Carbon Dots. Journal of Nanoscience and Nanotechnology, 2014, 14, 2334-2342.	0.9	36
49	Fluorescent microspheres of zinc 1,2-dicarbomethoxy-1,2-dithiolate complex decorated with carbon nanotubes. Carbon Letters, 2019, 29, 595-603.	3.3	34
50	Isolation of water soluble carbon nanotubes with network structure possessing multipodal junctions and its magnetic property. RSC Advances, 2013, 3, 7306.	1.7	33
51	Ferromagnetic Behaviour of Anthropogenic Multi-Walled Carbon Nanotubes Trapped in Spider Web Indoor. Journal of Nanoscience and Nanotechnology, 2014, 14, 2532-2538.	0.9	32
52	Biomass-Based Functionalized Graphene for Self-Rechargeable Zinc–Air Batteries. ACS Applied Energy Materials, 2022, 5, 6663-6670.	2.5	30
53	Upgrading of diesel engine exhaust waste into onion-like carbon nanoparticles for integrated degradation sensing in nano-biocomposites. New Journal of Chemistry, 2021, 45, 3675-3682.	1.4	26
54	Carbon Nanomaterials Derived from Black Carbon Soot: A Review of Materials and Applications. ACS Applied Nano Materials, 2021, 4, 12825-12844.	2.4	26

#	Article	IF	CITATIONS
55	Upgrading of seafood waste as a carbon source: Nano-world outlook. Journal of Environmental Chemical Engineering, 2021, 9, 106656.	3.3	25
56	Thiourea-functionalized graphene aerogel for the aqueous phase sensing of toxic Pb(II) metal ions and H2O2. Chemosphere, 2022, 287, 132105.	4.2	23
57	Recent advances in application of the graphene-based membrane for water purification. Materials Today Chemistry, 2021, 22, 100597.	1.7	23
58	High-performance hybrid microsupercapacitors based on Co–Mn layered double hydroxide nanosheets. Electrochimica Acta, 2020, 334, 135590.	2.6	20
59	N-Doped Carbon Nanorods from Biomass as a Potential Antidiabetic Nanomedicine. ACS Biomaterials Science and Engineering, 2022, 8, 2131-2141.	2.6	19
60	N,P-Doped Carbon Nanodots for Food-Matrix Decontamination, Anticancer Potential, and Cellular Bio-Imaging Applications. Journal of Biomedical Nanotechnology, 2020, 16, 283-303.	0.5	15
61	Coupling graphene microribbons with carbon nanofibers: New carbon hybrids for high-performing lithium and potassium-ion batteries. Sustainable Materials and Technologies, 2022, 32, e00393.	1.7	9
62	Aqueous Synthesis of CdTe Quantum Dot Using Dithiol-Functionalized Ionic Liquid. Journal of Nanomaterials, 2012, 2012, 1-6.	1.5	7
63	Nanocarbon-based-ZnO nanocomposites for supercapacitor application., 2021,, 553-573.		6
64	Characterization of metal, semiconductor, and metal-semiconductor core–shell nanostructures. , 2017, , 51-77.		5
65	Nanobiochar—a green catalyst for wastewater remediation. , 2022, , 109-132.		5