
Suzuko Yamazaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6912401/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Multistep photochromism by using photoinduced redox reaction in tungsten oxide colloidal solution containing Cu(II) ion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 635, 128060.	4.7	6
2	Crystal Facet Engineering and Hydrogen Spillover-Assisted Synthesis of Defective Pt/TiO _{2–<i>x</i>} Nanorods with Enhanced Visible Light-Driven Photocatalytic Activity. ACS Applied Materials & Interfaces, 2022, 14, 2291-2300.	8.0	16
3	Porous TiO2 adsorbed with squaraine dye as visible-light-responsive photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 421, 113543.	3.9	7
4	One-Pot Synthesis of Long Rutile TiO ₂ Nanorods and Their Photocatalytic Activity for O ₂ Evolution: Comparison with Near-Spherical Nanoparticles. ACS Omega, 2021, 6, 31557-31565.	3.5	6
5	Visible light responsive TiO ₂ photocatalysts for degradation of indoor acetaldehyde. RSC Advances, 2020, 10, 41393-41402.	3.6	4
6	The formation mechanism of ZnTPyP fibers fabricated by a surfactant-assisted method. New Journal of Chemistry, 2020, 44, 13824-13833.	2.8	4
7	Visualization of ultraviolet irradiation using WO3-cellulose derivatives composite film. Optical Materials, 2020, 106, 109929.	3.6	10
8	Factors affecting photocatalytic activity of TiO2. , 2020, , 23-38.		7
9	Effect of Organic Additives during Hydrothermal Syntheses of Rutile TiO ₂ Nanorods for Photocatalytic Applications. ACS Applied Nano Materials, 2019, 2, 5890-5899.	5.0	18
10	Photocatalysis of ZnTPyP fibers fabricated by surfactant-assisted method: Effect of surfactant and kinetic studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 580, 123741.	4.7	7
11	Photocatalytic degradation of gaseous trichloroethylene on porous titanium dioxide pellets modified with copper(II) under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 377, 228-235.	3.9	3
12	[Special Issue for Honor Award dedicating to Prof Kimito Funatsu]Fast Evaluation of Potential Synthesis Routes Using Transition State Database(TSDB). Journal of Computer Aided Chemistry, 2019, 20, 50-55.	0.3	0
13	Developing Active TiO ₂ Nanorods by Examining the Influence of Morphological Changes from Nanorods to Nanoparticles on Photocatalytic Activity. ACS Applied Nano Materials, 2018, 1, 5927-5935.	5.0	19
14	Effect of Dispersants on Photochromic Behavior of Tungsten Oxide Nanoparticles in Methylcellulose. ACS Applied Materials & Interfaces, 2018, 10, 19889-19896.	8.0	25
15	Factors affecting photocatalytic activity of visible light-responsive titanium dioxide doped with chromium ions. Catalysis Science and Technology, 2018, 8, 4726-4733.	4.1	7
16	Photocatalytic degradation of trichloroethylene on platinum ion-doped TiO2 under visible light irradiation. Research on Chemical Intermediates, 2017, 43, 5025-5039.	2.7	8
17	Effect of Mixed Valence States of Platinum Ion Dopants on the Photocatalytic Activity of Titanium Dioxide under Visible Light Irradiation. ACS Omega, 2017, 2, 9033-9039.	3.5	16
18	Kinetics of Coloration in Photochromic Tungsten(VI) Oxide/Silicon Oxycarbide/Silica Hybrid Xerogel: Insight into Cation Self-diffusion Mechanisms. ACS Applied Materials & Interfaces, 2016, 8, 14019-14028.	8.0	25

Suzuko Yamazaki

#	Article	IF	CITATIONS
19	Factors affecting oxygen evolution through water oxidation on polycrystalline titanium dioxide. RSC Advances, 2016, 6, 46994-47000.	3.6	17
20	Photocatalytic degradation of 4-chlorophenol on titanium dioxide modified with Cu(II) or Cr(III) ion under visible light irradiation. Applied Catalysis A: General, 2016, 527, 109-115.	4.3	20
21	Dioxomolybdenum(VI) and dioxotungsten(VI) complexes: efficient catalytic activity for crosslinking reaction in ethyleneâ€vinyl acetate copolymer/alkoxysilane composites. Polymers for Advanced Technologies, 2015, 26, 597-605.	3.2	7
22	Preparation of porous metal-ion-doped titanium dioxide and the photocatalytic degradation of 4-chlorophenol under visible light irradiation. Applied Catalysis B: Environmental, 2015, 176-177, 347-353.	20.2	30
23	Photochromic Properties of Tungsten Oxide/Methylcellulose Composite Film Containing Dispersing Agents. ACS Applied Materials & amp; Interfaces, 2015, 7, 26326-26332.	8.0	56
24	Photocatalytic activity of aqueous WO3 sol for the degradation of Orange II and 4-chlorophenol. Applied Catalysis A: General, 2013, 454, 30-36.	4.3	30
25	Kinetic characteristics of enhanced photochromism in tungsten oxide nanocolloid adsorbed on cellulose substrates, studied by total internal reflection Raman spectroscopy. RSC Advances, 2012, 2, 2128.	3.6	18
26	Kinetics of photocatalytic degradation of trichloroethylene in aqueous colloidal solutions of TiO2 and WO3 nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 249, 15-20.	3.9	24
27	Chirality induction and amplification in methylene blue H-aggregates viad- and l-phenylalanine pre-adsorbed on the tungsten oxide nanocolloid surface. New Journal of Chemistry, 2012, 36, 2167.	2.8	11
28	Synthesis of porous platinum-ion-doped titanium dioxide and the photocatalytic degradation of 4-chlorophenol under visible light irradiation. Applied Catalysis B: Environmental, 2012, 121-122, 148-153.	20.2	32
29	Kinetic study on photochromism of WO3 aqueous sol and its enhancement accompanying spectral changes by the addition of TiO2 aqueous sol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 392, 163-170.	4.7	10
30	<i>In situ</i> binary sol–gel reaction of various trifunctional alkoxysilane in the silaneâ€grafted polyolefin matrix and its effect upon the mechanical properties. Polymer Engineering and Science, 2011, 51, 632-640.	3.1	3
31	Photocatalytic Degradation of Chlorinated Ethanes in the Gas Phase on the Porous TiO ₂ Pellets: Effect of Surface Acidity. Journal of Physical Chemistry A, 2010, 114, 5092-5098.	2.5	22
32	Effect of thermal treatment on the photocatalytic degradation of ethylene, trichloroethylene, and chloroform. Research on Chemical Intermediates, 2009, 35, 91-101.	2.7	7
33	Adsorption and photocatalytic degradation of 1,4-dioxane on TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 185, 150-155.	3.9	25
34	Photocatalytic degradation of chloroform in the gas phase on the porous TiO2 pellets: effect of Cl accumulated on the catalyst surface. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 169, 191-196.	3.9	24
35	Reduced formation of undesirable by-products from photocatalytic degradation of trichloroethylene. Applied Catalysis B: Environmental, 2005, 61, 346-351.	20.2	20
36	Reaction Mechanism of Photocatalytic Degradation of Chlorinated Ethylenes on Porous TiO2Pellets:Â Cl Radical-Initiated Mechanism. Journal of Physical Chemistry A, 2004, 108, 5183-5188.	2.5	58

Suzuko Yamazaki

#	Article	IF	CITATIONS
37	Photocatalytic Degradation of Tri- and Tetrachloroethylene on Porous TiO ₂ Pellets. Electrochemistry, 2002, 70, 412-415.	1.4	14
38	Kinetic Studies of Reductive Deposition of Copper(II) Ions Photoassisted by Titanium Dioxide. Journal of Physical Chemistry A, 2001, 105, 11285-11290.	2.5	39
39	Photocatalytic degradation of trichloroethylene in water using TiO2 pellets. Water Research, 2001, 35, 1022-1028.	11.3	112
40	Effect of sulfate ions for sol–gel synthesis of titania photocatalyst. Applied Catalysis A: General, 2001, 210, 97-102.	4.3	61
41	Photocatalytic degradation of gaseous tetrachloroethylene on porous TiO2 pellets. Applied Catalysis B: Environmental, 2001, 33, 109-117.	20.2	46
42	Environmentally benign oxidation using a palladium catalyst system. Green Chemistry, 2000, 2, 257-260.	9.0	62
43	Kinetic studies of oxidation of ethylene over a TiO2 photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 1999, 121, 55-61.	3.9	140
44	Density functional study of the primary events on TiO2 photocatalyst. Catalysis Letters, 1999, 59, 191-194.	2.6	10