Dirk-Jan Scheffers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6912298/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Benzenetriol-Derived Compounds against Citrus Canker. Molecules, 2021, 26, 1436.	1.7	2
2	Antibacterial activity of a new monocarbonyl analog of curcumin MAC 4 is associated with divisome disruption. Bioorganic Chemistry, 2021, 109, 104668.	2.0	9
3	An Organogold Compound as Potential Antimicrobial Agent against Drugâ€Resistant Bacteria: Initial Mechanistic Insights. ChemMedChem, 2021, 16, 3060-3070.	1.6	26
4	The Cell Wall of <i>Bacillus subtilis</i> . Current Issues in Molecular Biology, 2021, 41, 539-596.	1.0	18
5	Novel Modifications of Nonribosomal Peptides from Brevibacillus laterosporus MG64 and Investigation of Their Mode of Action. Applied and Environmental Microbiology, 2020, 86, .	1.4	12
6	Investigating the Modes of Action of the Antimicrobial Chalcones BC1 and T9A. Molecules, 2020, 25, 4596.	1.7	6
7	Characterization of two relacidines belonging to a novel class of circular lipopeptides that act against Gramâ€negative bacterial pathogens. Environmental Microbiology, 2020, 22, 5125-5136.	1.8	19
8	The PASTA domains of Bacillus subtilis PBP2B strengthen the interaction of PBP2B with DivIB. Microbiology (United Kingdom), 2020, 166, 826-836.	0.7	11
9	Flotillin-mediated membrane fluidity controls peptidoglycan synthesis and MreB movement. ELife, 2020, 9, .	2.8	52
10	A simplified curcumin targets the membrane of <i>Bacillus subtilis</i> . MicrobiologyOpen, 2019, 8, e00683.	1.2	28
11	Purification and characterization of FtsZ from the citrus canker pathogenXanthomonas citrisubsp.citri. MicrobiologyOpen, 2019, 8, e00706.	1.2	3
12	Antibacterial activity of 3,3′-dihydroxycurcumin (DHC) is associated with membrane perturbation. Bioorganic Chemistry, 2019, 90, 103031.	2.0	14
13	Antibacterial activity of monoacetylated alkyl gallates against Xanthomonas citri subsp. citri. Archives of Microbiology, 2018, 200, 929-937.	1.0	23
14	Design of Antibacterial Agents: Alkyl Dihydroxybenzoates against Xanthomonas citri subsp. citri. International Journal of Molecular Sciences, 2018, 19, 3050.	1.8	14
15	Pentapeptideâ€rich peptidoglycan at the <i>Bacillus subtilis</i> cellâ€division site. Molecular Microbiology, 2017, 104, 319-333.	1.2	25
16	Bicyclic enol cyclocarbamates inhibit penicillin-binding proteins. Organic and Biomolecular Chemistry, 2017, 15, 894-910.	1.5	6
17	Xanthomonas citri MinC Oscillates from Pole to Pole to Ensure Proper Cell Division and Shape. Frontiers in Microbiology, 2017, 8, 1352.	1.5	13
18	Metal-dependent SpollE oligomerization stabilizes FtsZ during asymmetric division in Bacillus subtilis. PLoS ONE, 2017, 12, e0174713.	1.1	8

DIRK-JAN SCHEFFERS

#	Article	IF	CITATIONS
19	Bacterial dynamin as a membrane puncture repair kit. Environmental Microbiology, 2016, 18, 2298-2301.	1.8	4
20	A 1 MDa protein complex containing critical components of the Escherichia coli divisome. Scientific Reports, 2016, 5, 18190.	1.6	28
21	FtsZ-Dependent Elongation of a Coccoid Bacterium. MBio, 2016, 7, .	1.8	21
22	Antibacterial activity of alkyl gallates is a combination of direct targeting of FtsZ and permeabilization of bacterial membranes. Frontiers in Microbiology, 2015, 6, 390.	1.5	43
23	Lipidll: Just Another Brick in the Wall?. PLoS Pathogens, 2015, 11, e1005213.	2.1	30
24	The Escherichia coli Membrane Protein Insertase YidC Assists in the Biogenesis of Penicillin Binding Proteins. Journal of Bacteriology, 2015, 197, 1444-1450.	1.0	19
25	<i>In Vivo</i> Cluster Formation of Nisin and Lipid II Is Correlated with Membrane Depolarization. Antimicrobial Agents and Chemotherapy, 2015, 59, 3683-3686.	1.4	12
26	Defining the Region of Bacillus subtilis SpoIIIJ That Is Essential for Its Sporulation-Specific Function. Journal of Bacteriology, 2014, 196, 1318-1324.	1.0	3
27	Focus on Membrane Differentiation and Membrane Domains in the Prokaryotic Cell. Journal of Molecular Microbiology and Biotechnology, 2013, 23, 345-356.	1.0	11
28	FtsZ Polymerization Assays: Simple Protocols and Considerations. Journal of Visualized Experiments, 2013, , e50844.	0.2	17
29	Phage ï•29 protein p1 promotes replication by associating with the FtsZ ring of the divisome in <i>Bacillus subtilis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12313-12318.	3.3	18
30	The localization of key <i><scp>B</scp>acillus subtilis</i> penicillin binding proteins during cell growth is determined by substrate availability. Environmental Microbiology, 2013, 15, 3272-3281.	1.8	22
31	Balanced transcription of cell division genes in <i><scp>B</scp>acillus subtilis</i> as revealed by single cell analysis. Environmental Microbiology, 2013, 15, 3196-3209.	1.8	8
32	Bacillus subtilis SepF Binds to the C-Terminus of FtsZ. PLoS ONE, 2012, 7, e43293.	1.1	50
33	Large ring polymers align FtsZ polymers for normal septum formation. EMBO Journal, 2011, 30, 617-626.	3.5	73
34	Activators of the Glutamate-Dependent Acid Resistance System Alleviate Deleterious Effects of YidC Depletion in <i>Escherichia coli</i> . Journal of Bacteriology, 2011, 193, 1308-1316.	1.0	7
35	Diffusion nuclear magnetic resonance spectroscopy detects substoichiometric concentrations of small molecules in protein samples. Analytical Biochemistry, 2010, 396, 117-123.	1.1	8
36	Characterization of ftsZ Mutations that Render Bacillus subtilis Resistant to MinC. PLoS ONE, 2010, 5, e12048.	1.1	11

DIRK-JAN SCHEFFERS

#	Article	IF	CITATIONS
37	YidC is required for the assembly of the MscL homopentameric pore. FEBS Journal, 2009, 276, 4891-4899.	2.2	22
38	The effect of MinC on FtsZ polymerization is pH dependent and can be counteracted by ZapA. FEBS Letters, 2008, 582, 2601-2608.	1.3	45
39	Localization and Interactions of Teichoic Acid Synthetic Enzymes in Bacillus subtilis. Journal of Bacteriology, 2008, 190, 1812-1821.	1.0	79
40	Contribution of the FtsQ Transmembrane Segment to Localization to the Cell Division Site. Journal of Bacteriology, 2007, 189, 7273-7280.	1.0	19
41	Cell wall growth during elongation and division: one ring to bind them?. Molecular Microbiology, 2007, 64, 877-880.	1.2	4
42	Dynamic localization of penicillin-binding proteins during spore development in Bacillus subtilis. Microbiology (United Kingdom), 2005, 151, 999-1012.	0.7	21
43	Bacterial Cell Wall Synthesis: New Insights from Localization Studies. Microbiology and Molecular Biology Reviews, 2005, 69, 585-607.	2.9	499
44	PBP1 Is a Component of the Bacillus subtilis Cell Division Machinery. Journal of Bacteriology, 2004, 186, 5153-5156.	1.0	51
45	Several distinct localization patterns for penicillin-binding proteins in Bacillus subtilis. Molecular Microbiology, 2003, 51, 749-764.	1.2	136
46	R174 of Escherichia coli FtsZ is involved in membrane interaction and protofilament bundling, and is essential for cell division. Molecular Microbiology, 2003, 51, 645-657.	1.2	78
47	Cytokinesis in Bacteria. Microbiology and Molecular Biology Reviews, 2003, 67, 52-65.	2.9	548
48	GTP Hydrolysis of Cell Division Protein FtsZ:  Evidence that the Active Site Is Formed by the Association of Monomers. Biochemistry, 2002, 41, 521-529.	1.2	144
49	Immediate GTP hydrolysis upon FtsZ polymerization. Molecular Microbiology, 2002, 43, 1517-1521.	1.2	39
50	Substitution of a conserved aspartate allows cation-induced polymerization of FtsZ. FEBS Letters, 2001, 494, 34-37.	1.3	28
51	The polymerization mechanism of the bacterial cell division protein FtsZ. FEBS Letters, 2001, 506, 6-10.	1.3	57
52	Non-hydrolysable GTP-gamma-S stabilizes the FtsZ polymer in a GDP-bound state. Molecular Microbiology, 2000, 35, 1211-1219.	1.2	51