Zhenyu Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6912289/publications.pdf

Version: 2024-02-01

		172457	189892
62	2,636	29	50
papers	citations	h-index	g-index
62	62	62	3293
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	1D/3D Heterogeneous Assembling Body as Trifunctional Electrocatalysts Enabling Zinc–Air Battery and Selfâ€Powered Overall Water Splitting. Advanced Functional Materials, 2022, 32, .	14.9	88
2	Chemically coupled 0D-3D hetero-structure of Co9S8-Ni3S4 hollow spheres for Zn-based supercapacitors. Chemical Engineering Journal, 2022, 430, 132836.	12.7	23
3	Anionic organo-hydrogel electrolyte with enhanced ionic conductivity and balanced mechanical properties for flexible supercapacitors. Journal of Materials Chemistry A, 2022, 10, 11277-11287.	10.3	33
4	"One-for-two―strategy: The construction of high performance positive and negative electrode materials via one Co-based metal organic framework precursor for boosted hybrid supercapacitor energy density. Journal of Power Sources, 2022, 541, 231689.	7.8	16
5	Formation of V6O11@Ni(OH)2/NiOOH hollow double-shell nanoflowers for the excellent cycle stability of supercapacitors. Dalton Transactions, 2021, 50, 3693-3700.	3.3	15
6	Step-by-step etching strategy to construct multiple-shell amorphous Co/Ni-(PO4)x(OH)y hollow polyhedron for supercapacitor application. Journal of Solid State Chemistry, 2021, 304, 122618.	2.9	6
7	In Situ Construction of a Heterostructured Zn–Mo–Ni–O–S Hollow Microflower for High-Performance Hybrid Supercapacitors. ACS Applied Energy Materials, 2021, 4, 801-809.	5.1	9
8	Bucket Effect: A Metal–Organic Framework Derived High-Performance FeS ₂ /Fe ₂ O ₃ @S-rGO Negative Material for Enhanced Overall Supercapacitor Capacitance. ACS Applied Energy Materials, 2021, 4, 11004-11013.	5.1	28
9	A coumarin-appended cyclometalated iridium(III) complex for visible light driven photoelectrochemical bioanalysis. Biosensors and Bioelectronics, 2020, 147, 111779.	10.1	19
10	A controllable top-down etching and in-situ oxidizing strategy: metal-organic frameworks derived α-Co/Ni(OH)2@Co3O4 hollow nanocages for enhanced supercapacitor performance. Applied Surface Science, 2020, 504, 144395.	6.1	73
11	Effective preparation of Ni1.4Co0.6P@C micro-spheres with prolonged cycling lives for high performance hybrid supercapacitors. Journal of Alloys and Compounds, 2020, 818, 152828.	5.5	25
12	Two new inorganic–organic hybrid zinc phosphites and their derived ZnO/ZnS heterostructure for efficient photocatalytic hydrogen production. RSC Advances, 2020, 10, 812-817.	3.6	7
13	Mo, Co co-doped NiS bulks supported on Ni foam as an efficient electrocatalyst for overall water splitting in alkaline media. Sustainable Energy and Fuels, 2020, 4, 1654-1664.	4.9	23
14	Rational construction of MOF derived hollow leaf-like Ni/Co(VO3)x(OH)2-x for enhanced supercapacitor performance. Applied Surface Science, 2020, 533, 147308.	6.1	26
15	Construction of Ni–Mo sulfides core-shell nanoneedle arrays for hybrid supercapacitors with high mass loading. Journal of Power Sources, 2020, 475, 228631.	7.8	25
16	<i>In situ</i> fabrication of a rose-shaped Co ₂ P ₂ O ₇ /C nanohybrid <i>via</i> a coordination polymer template for supercapacitor application. New Journal of Chemistry, 2020, 44, 12514-12521.	2.8	20
17	A dendrite-free and stable anode for high-performance Li–O ₂ batteries by prestoring Li in reduced graphene oxide coated three-dimensional nickel foam. Chemical Communications, 2020, 56, 7645-7648.	4.1	6
18	Pillar-Coordinated Strategy to Modulate Phase Transfer of α-Ni(OH) ₂ for Enhanced Supercapacitor Application. ACS Applied Energy Materials, 2020, 3, 5628-5636.	5.1	24

#	Article	IF	CITATIONS
19	Construction of carbon quantum dots embed αâ€Co/Ni(OH) < sub > 2 < /sub > hollow nanocages with enhanced supercapacitor performance. Journal of the American Ceramic Society, 2020, 103, 4342-4351.	3.8	25
20	NiSe2/Ni(OH)2 Heterojunction Composite through Epitaxial-like Strategy as High-Rate Battery-Type Electrode Material. Nano-Micro Letters, 2020, 12, 61.	27.0	44
21	2D nanosheet/3D cubic framework Ni–Co sulfides for improved supercapacitor performance <i>via</i> structural engineering. Dalton Transactions, 2020, 49, 8162-8168.	3.3	13
22	Iron fumarate as large-capacity and long-life anode material for Li-ion battery boosted by conductive Fe2P decorating. Journal of Alloys and Compounds, 2019, 809, 151826.	5 . 5	16
23	Fe/N-doped carbon nanofibers with Fe ₃ O ₄ /Fe ₂ C nanocrystals enchased as electrocatalysts for efficient oxygen reduction reaction. Inorganic Chemistry Frontiers, 2019, 6, 2296-2303.	6.0	15
24	Four novel Co(II) metal-organic frameworks based on semi-rigid ligand and their secondary building units transformation. Journal of Molecular Structure, 2019, 1197, 87-95.	3.6	7
25	Hydrothermal synthesis and electrochemical properties of 3D Zn2V2O7 microsphere for alkaline rechargeable battery. Journal of Power Sources, 2019, 439, 227087.	7.8	14
26	"HOT―Alkaline Hydrolysis of Amorphous MOF Microspheres to Produce Ultrastable Bimetal Hydroxide Electrode with Boosted Cycling Stability. Small, 2019, 15, e1904663.	10.0	36
27	Controlled Hydrolysis of Metal–Organic Frameworks: Hierarchical Ni/Co-Layered Double Hydroxide Microspheres for High-Performance Supercapacitors. ACS Nano, 2019, 13, 7024-7030.	14.6	305
28	Bimetal Hydroxide Electrodes: "HOT―Alkaline Hydrolysis of Amorphous MOF Microspheres to Produce Ultrastable Bimetal Hydroxide Electrode with Boosted Cycling Stability (Small 49/2019). Small, 2019, 15, 1970267.	10.0	0
29	Construction of Hollow Cobalt–Nickel Phosphate Nanocages through a Controllable Etching Strategy for High Supercapacitor Performances. ACS Applied Energy Materials, 2019, 2, 1086-1092.	5.1	120
30	Metalâ^'organic framework derived porous hollow ternary sulfide as robust anode material for sodium ion batteries. Materials Today Energy, 2019, 12, 53-61.	4.7	23
31	Two new inorganic–organic hybrid zinc phosphate frameworks and their application in fluorescence sensor and photocatalytic hydrogen evolution. Journal of Solid State Chemistry, 2019, 269, 575-579.	2.9	18
32	A yolk–shelled Co ₉ S ₈ /MoS ₂ –CN nanocomposite derived from a metal–organic framework as a high performance anode for sodium ion batteries. Journal of Materials Chemistry A, 2018, 6, 4776-4782.	10.3	131
33	Two-dimensional cobalt metal-organic frameworks for efficient C3H6/CH4 and C3H8/CH4 hydrocarbon separation. Chinese Chemical Letters, 2018, 29, 865-868.	9.0	38
34	An Aminoâ€Functionalized Metalâ€Organic Framework, Based on a Rare Ba ₁₂ (COO) ₁₈ (NO ₃) ₂ Cluster, for Efficient C ₃ /C ₂ /C ₁ Separation and Preferential Catalytic Performance. Chemistry - A European Journal, 2018, 24, 2137-2143.	3.3	61
35	A MOF-derived coral-like NiSe@NC nanohybrid: an efficient electrocatalyst for the hydrogen evolution reaction at all pH values. Nanoscale, 2018, 10, 22758-22765.	5.6	78
36	Synthesis, Structure, and Properties of Coordination Polymers Based on 1,4-Bis((2-methyl-1H-imidazol-1-yl)methyl)benzene and Different Carboxylate Ligands. Crystals, 2018, 8, 288.	2.2	2

3

#	Article	IF	Citations
37	Facile synthesis of a two-dimensional layered Ni-MOF electrode material for high performance supercapacitors. RSC Advances, 2018, 8, 17747-17753.	3.6	55
38	Optimizing crystallinity and porosity of hierarchical Ni(OH) (sub>2 (sub> through conformal transformation of metal–organic framework template for supercapacitor applications. CrystEngComm, 2018, 20, 4313-4320.	2.6	32
39	Balancing crystallinity and specific surface area of metal-organic framework derived nickel hydroxide for high-performance supercapacitor. Electrochimica Acta, 2018, 284, 202-210.	5.2	38
40	Bimetallic-MOF Derived Accordion-like Ternary Composite for High-Performance Supercapacitors. Inorganic Chemistry, 2018, 57, 10953-10960.	4.0	108
41	Surface wettability switching of metal-organic framework mesh for oil-water separation. Materials Letters, 2017, 189, 82-85.	2.6	44
42	Stepwise Synthesis of Diverse Isomer MOFs via Metal-Ion Metathesis in a Controlled Single-Crystal-to-Single-Crystal Transformation. Crystal Growth and Design, 2017, 17, 4084-4089.	3.0	29
43	A multi-aromatic hydrocarbon unit induced hydrophobic metal–organic framework for efficient C ₂ /C ₁ hydrocarbon and oil/water separation. Journal of Materials Chemistry A, 2017, 5, 1168-1175.	10.3	113
44	Fluorescence turn-on detection of uric acid by a water-stable metal–organic nanotube with high selectivity and sensitivity. Journal of Materials Chemistry C, 2017, 5, 601-606.	5. 5	48
45	A Stable Amino-Functionalized Interpenetrated Metal–Organic Framework Exhibiting Gas Selectivity and Pore-Size-Dependent Catalytic Performance. Inorganic Chemistry, 2017, 56, 13634-13637.	4.0	34
46	Monitoring thermally induced structural deformation and framework decomposition of ZIF-8 through in situ temperature dependent measurements. Physical Chemistry Chemical Physics, 2017, 19, 27178-27183.	2.8	30
47	Green Fabrication of Ultrathin Co ₃ O ₄ Nanosheets from Metal–Organic Framework for Robust High-Rate Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2017, 9, 41827-41836.	8.0	118
48	Highly efficient oil/water separation and trace organic contaminants removal based on superhydrophobic conjugated microporous polymer coated devices. Chemical Engineering Journal, 2017, 326, 640-646.	12.7	62
49	Wettability switchable metal-organic framework membranes for pervaporation of water/ethanol mixtures. Inorganic Chemistry Communication, 2017, 82, 64-67.	3.9	25
50	A NbO-type copper metal–organic framework decorated with carboxylate groups exhibiting highly selective CO ₂ adsorption and separation of organic dyes. Journal of Materials Chemistry A, 2016, 4, 13844-13851.	10.3	70
51	Pentiptycene-Based Luminescent Cu (II) MOF Exhibiting Selective Gas Adsorption and Unprecedentedly High-Sensitivity Detection of Nitroaromatic Compounds (NACs). Scientific Reports, 2016, 6, 20672.	3.3	51
52	Crystal structures, topological analysis and luminescence properties of three coordination polymers based on a semi-rigid ligand and N-donor ligand linkers. New Journal of Chemistry, 2016, 40, 5957-5965.	2.8	19
53	Expanded Porous Metal–Organic Frameworks by SCSC: Organic Building Units Modifying and Enhanced Gas-Adsorption Properties. Inorganic Chemistry, 2016, 55, 6420-6425.	4.0	33
54	Iron(III) Porphyrinâ€Based Porous Material as Photocatalyst for Highly Efficient and Selective Degradation of Congo Red. Macromolecular Chemistry and Physics, 2016, 217, 599-604.	2.2	53

#	Article	IF	CITATION
55	Metal–organic hybrid materials built with tetrachlorophthalate acid and different N-donor coligands: Structure diversity and photoluminescence. Journal of Solid State Chemistry, 2016, 234, 36-47.	2.9	14
56	Unprecedented Solvent-Dependent Sensitivities in Highly Efficient Detection of Metal Ions and Nitroaromatic Compounds by a Fluorescent Barium Metal–Organic Framework. Inorganic Chemistry, 2016, 55, 1782-1787.	4.0	87
57	Synthesis, structure, and properties of a 3D porous Zn(<scp>ii</scp>) MOF constructed from a terpyridine-based ligand. RSC Advances, 2016, 6, 16575-16580.	3.6	21
58	Multifunctional lanthanide–organic frameworks for fluorescent sensing, gas separation and catalysis. Dalton Transactions, 2016, 45, 3743-3749.	3.3	74
59	Transition metal coordination polymers based on tetrabromoterephthalic and bis(imidazole) ligands: Syntheses, structures, topological analysis and photoluminescence properties. Journal of Solid State Chemistry, 2015, 229, 49-61.	2.9	7
60	Trimer formation of 6-methyl-1,3,5-triazine-2,4-diamine in salt with organic and inorganic acids: analysis of supramolecular architecture. Science China Chemistry, 2014, 57, 1731-1737.	8.2	8
61	Reactant ratio-modulated entangled Cd(ii) coordination polymers based on rigid tripodal imidazole ligand and tetrabromoterephthalic acid: interpenetration, interdigitation and self-penetration. CrystEngComm, 2013, 15, 5552.	2.6	38
62	Construction of supramolecular polymer hydrogel electrolyte with ionic channels for flexible supercapacitors. Materials Chemistry Frontiers, 0, , .	5.9	13