Hiroshi Noguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6912212/publications.pdf

Version: 2024-02-01

220 papers 2,395 citations

257101 24 h-index 301761 39 g-index

221 all docs

221 docs citations

times ranked

221

1499 citing authors

#	Article	IF	CITATIONS
1	Annealing Time Effects on Mechanically Long Fatigue Crack Growth of TRIP-maraging Steels. ISIJ International, 2022, 62, 399-401.	0.6	O
2	Interaction analysis between strain concentration and strain localization in cracked body. Fatigue and Fracture of Engineering Materials and Structures, 2022, 45, 1406-1420.	1.7	5
3	Digital-image-correlation observation of cyclic plastic strain field during the damage-accumulation mode of fatigue crack propagation under pure cyclic mode II loading for cold-rolled SUS430 steel. Materials Science & Description of the control	2.6	3
4	Analysis for tensile strength of multi-phase alloy composed of ductile matrix and brittle reinforcement with circumferential notch in As-cast AZX912 Mg alloy. Theoretical and Applied Fracture Mechanics, 2022, 121, 103465.	2.1	3
5	Early crack initiation mode during tensile fracture process in a punch-processed precipitation-hardened steel plates and evaluation method to treat the crack as an equivalent pre-crack. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing. 2022. 850. 143534.	2.6	О
6	Hydrogen-assisted Crack Propagation in Pre-strained Twinning-induced Plasticity Steel: from Initiation at a Small Defect to Failure. ISIJ International, 2021, 61, 1278-1286.	0.6	4
7	Three-dimensional characterization of low-cycle fatigue crack morphology in TRIP-maraging steel: Crack closure, geometrical uncertainty and wear. International Journal of Fatigue, 2021, 143, 106032.	2.8	1
8	Microscopic examination of striation spacing during ductile crack growth in Fe-3wt%Si single-crystalline thin plates in air and hydrogen. Materials Science & Dipineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 802, 140652.	2.6	1
9	Effect of strain localization on fatigue properties of precipitation-hardened steel with an arbitrarily length crack. International Journal of Fatigue, 2021, 143, 106017.	2.8	9
10	Annealing Time Effects on Mechanically Long Fatigue Crack Growth of TRIP-maraging Steels. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2021, 107, 321-324.	0.1	0
11	Fatigue crack propagation study of precipitation hardened steels. Materials Today: Proceedings, 2021, 46, 4470-4474.	0.9	O
12	Notch shape dependence of fatigue crack extension in equiatomic CrMnFeCoNi high-entropy alloy. International Journal of Fatigue, 2021, 153, 106481.	2.8	7
13	Roles of Hydrogen and Plastic Strain Distribution on Delayed Crack Growth in Single-crystalline Fe–Si alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 803, 140703.	2.6	2
14	Revealing the mechanism of critical root radius in notch fatigue limit based on crack closure concept. International Journal of Fatigue, 2020, 130, 105261.	2.8	5
15	Planar slip-driven fatigue crack initiation and propagation in an equiatomic CrMnFeCoNi high-entropy alloy. International Journal of Fatigue, 2020, 133, 105418.	2.8	55
16	Plastic deformation sequence and strain gradient characteristics of hydrogen-induced delayed crack propagation in single-crystalline Fe–Si alloy. Scripta Materialia, 2020, 178, 99-103.	2.6	7
17	Shallow crack effect on evaluation of residual tensile strength: Harmless and stable cracks in finite-sized structure made of ductile metals. Theoretical and Applied Fracture Mechanics, 2020, 109, 102734.	2.1	4
18	Harmless Preexisting Crack in Structures Made of Hydrogen-Embrittlement Sensitive Materials under Monotonic Tension. IOP Conference Series: Materials Science and Engineering, 2020, 774, 012098.	0.3	0

#	Article	IF	CITATIONS
19	Fatigue Limit Reliability Analysis for Notched Material with Some Kinds of Dense Inhomogeneities Using Fracture Mechanics. , 2020, , .		o
20	Distinguishing geometric and metallurgic hydrogen-embrittlement susceptibilities in pre-cracked structures made of interstitial-free steel under monotonic tension. Theoretical and Applied Fracture Mechanics, 2020, 108, 102574.	2.1	1
21	Simplified stress field determination for an inclined crack and interaction between two cracks under tension. Theoretical and Applied Fracture Mechanics, 2020, 107, 102561.	2.1	8
22	Influence of nanotwins on hydrogen embrittlement of TWIP (twinning-induced plasticity) steel processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 783, 139273.	2.6	7
23	Gaseous hydrogen embrittlement of a Ni-free austenitic stainless steel containing 1 mass% nitrogen: Effects of nitrogen-enhanced dislocation planarity. International Journal of Hydrogen Energy, 2020, 45, 10209-10218.	3.8	30
24	Fatigue crack propagation modes: plastic deformation mode and damage accumulation mode. International Journal of Fracture, 2020, 222, 111-122.	1.1	14
25	Distinct fatigue limit of a 6XXX series aluminum alloy in relation to crack tip strain-aging. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 785, 139378.	2.6	4
26	Fatigue characteristics of a notched specimen made of commercially-pure titanium. Theoretical and Applied Fracture Mechanics, 2020, 109, 102764.	2.1	4
27	Fatigue Behavior in an Fe-N Binary Ferritic Steel: Similarity and Difference between Carbon and Nitrogen. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2020, 106, 413-419.	0.1	2
28	Influence of dynamic-strain aging due to excess Mg on fatigue crack growth rate scatter in Al6061-T6 alloy. Theoretical and Applied Fracture Mechanics, 2020, 108, 102617.	2.1	2
29	Crystallographic selection rule for the propagation mode of microstructurally small fatigue crack in a laminated Ti-6Al-4V alloy: Roles of basal and pyramidal slips. International Journal of Fatigue, 2019, 128, 105200.	2.8	25
30	Dislocation motion at a fatigue crack tip in a high-nitrogen steel clarified through in situ electron channeling contrast imaging. Materials Characterization, 2019, 158, 109930.	1.9	16
31	Mode I fatigue crack growth induced by strain-aging in precipitation-hardened aluminum alloys. Theoretical and Applied Fracture Mechanics, 2019, 104, 102340.	2.1	11
32	Effect analysis of stress-intensity-factor-range decreasing rate for obtaining threshold stress-intensity-factor-range. Theoretical and Applied Fracture Mechanics, 2019, 104, 102377.	2.1	1
33	Fatigue Behavior in an Fe–N Binary Ferritic Steel: Similarity and Difference between Carbon and Nitrogen. ISIJ International, 2019, 59, 186-191.	0.6	3
34	Fatigue Crack Propagation Resistance in Metastable Laminated Microstructures. Materia Japan, 2019, 58, 206-213.	0.1	0
35	Influence of Stress Re-distribution on Hydrogen-induced Fatigue Crack Propagation. ISIJ International, 2019, 59, 1683-1690.	0.6	3
36	Fatigue Resistance of Laminated and Non-laminated TRIP-maraging Steels: Crack Roughness vs Tensile Strength. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 1142-1145.	1.1	8

3

#	Article	IF	CITATIONS
37	ECCI Characterization of Dislocation Structures at a Non-propagating Fatigue Crack Tip: Toward Understanding the Effects of Mn-C and Cr-N Couples on Crack Growth Resistance. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 426-435.	1.1	9
38	Notch sensitivity in pure nickel determined by two mechanisms of hydrogen-assisted crack propagation: sub-/main-crack coalescence versus main-crack growth. The Proceedings of the Materials and Mechanics Conference, 2019, 2019, OS0110.	0.0	0
39	Characteristics of plastic deformation associated with hydrogen-induced delayed crack propagation in a sheet of single-crystal Fe-Si alloy. The Proceedings of the Materials and Mechanics Conference, 2019, 2019, OS0111.	0.0	0
40	Effects of the shape of small flaws and damage due to a focused ion beam on the fatigue strength characteristics of annealed medium†carbon steel. Engineering Failure Analysis, 2018, 87, 49-68.	1.8	2
41	Hydrogen-assisted failure in a bimodal twinning-induced plasticity steel: Delamination events and damage evolution. International Journal of Hydrogen Energy, 2018, 43, 2492-2502.	3.8	15
42	Temperature dependence of transgranular fatigue crack resistance in interstitial-free steel and Fe-C steels with supersaturated carbon: Effects of dynamic strain aging and dynamic precipitation. International Journal of Fatigue, 2018, 110, 1-9.	2.8	12
43	Non-propagating fatigue cracks in austenitic steels with a micro-notch: Effects of dynamic strain aging, martensitic transformation, and microstructural hardness heterogeneity. International Journal of Fatigue, 2018, 113, 359-366.	2.8	12
44	Dependence of fatigue limit on step height for stepped 0.45% carbon steel with singular stress field. Engineering Fracture Mechanics, 2018, 188, 20-35.	2.0	2
45	Visualization of dislocations through electron channeling contrast imaging at fatigue crack tip, interacting with pre-existing dislocations. Materials Research Letters, 2018, 6, 61-66.	4.1	19
46	Microstructural hardness heterogeneity triggers fatigue crack non-propagation in as-hot-rolled Fe-30Mn-3Si-3Al twinning-induced plasticity steel. International Journal of Fatigue, 2018, 108, 18-24.	2.8	12
47	Fatigue Behavior of Fe-Cr-Ni-based Metastable Austenitic Steels with an Identical Tensile Strength and Different Solute Carbon Contents. ISIJ International, 2018, 58, 1910-1919.	0.6	5
48	Fatigue Behavior of Fe-Cr-Ni-based Metastable Austenitic Steels with an Identical Tensile Strength and Different Solute Carbon Contents. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2018, 104, 88-97.	0.1	1
49	Crystallographic orientation-dependent growth mode of microstructurally fatigue small crack in a laminated Ti–6Al–4V alloy. Procedia Structural Integrity, 2018, 13, 694-699.	0.3	5
50	Emergence of distinct fatigue limit: impact of excess solute magnesium in 6061-T6 alloy. Procedia Structural Integrity, 2018, 13, 1010-1013.	0.3	0
51	Re-examination of fatigue crack propagation mechanism under cyclic Mode II loading. Procedia Structural Integrity, 2018, 13, 1026-1031.	0.3	4
52	Effect of Si on temperature dependence of non-propagation limit of small fatigue crack in a Fe-C alloy. Procedia Structural Integrity, 2018, 13, 1032-1036.	0.3	3
53	Small fatigue crack growth in a high entropy alloy. Procedia Structural Integrity, 2018, 13, 1065-1070.	0.3	11
54	Quantification method for parameters affecting multi-scale roughness-induced fatigue crack closure. Procedia Structural Integrity, 2018, 13, 1071-1075.	0.3	2

#	Article	IF	CITATIONS
55	Proposal of fractographic analysis method coupled with EBSD and ECCI. Procedia Structural Integrity, 2018, 13, 1076-1081.	0.3	3
56	Analysis of fatigue crack configuration influence on fatigue life. Procedia Structural Integrity, 2018, 13, 1148-1153.	0.3	2
57	Proposal and verification of novel fatigue crack propagation simulation method by finite element method Procedia Structural Integrity, 2018, 13, 1154-1158.	0.3	1
58	Effect of state of carbon on fatigue properties and dislocation structure of Fe-0.017mass%C alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 732, 212-219.	2.6	6
59	Influence of Stress Re-distribution on Hydrogen-induced Fatigue Crack Propagation. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2018, 104, 46-53.	0.1	O
60	Ductile-to-brittle transition in tensile failure due to shear-affected zone with a stress-concentration source: a comparative study on punched-plate tensile-failure characteristics of precipitation-hardened and dual-phase steels. International Journal of Fracture, 2018, 212, 237-248.	1.1	9
61	Effect of shear-affected zone on fatigue crack propagation mode. International Journal of Fatigue, 2018, 116, 36-47.	2.8	8
62	Revisiting the mechanism why fatigue limit of high strength steel does not increase according to its hardness. The Proceedings of Conference of Kyushu Branch, 2018, 2018.71, C35.	0.0	0
63	Improvement of fatigue limit prediction by hardness based on plasticity zone similarity between fatigue crack and indentation. The Proceedings of Conference of Kyushu Branch, 2018, 2018.71, C34.	0.0	0
64	Underlying interstitial carbon concentration dependence of transgranular fatigue crack resistance in Fe-C ferritic steels: The kinetic effect viewpoint. International Journal of Fatigue, 2017, 98, 101-110.	2.8	23
65	Bone-like crack resistance in hierarchical metastable nanolaminate steels. Science, 2017, 355, 1055-1057.	6.0	297
66	Impact of Mn–C couples on fatigue crack growth in austenitic steels: Is the attractive atomic interaction negative or positive?. International Journal of Fatigue, 2017, 99, 1-12.	2.8	21
67	Fatigue crack growth behavior of JIS SCM440 steel near fatigue threshold in 9-MPa hydrogen gas environment. International Journal of Hydrogen Energy, 2017, 42, 13158-13170.	3.8	20
68	Multiscale in situ deformation experiments: A sequential process from strain localization to failure in a laminated Ti-6Al-4V alloy. Materials Characterization, 2017, 128, 217-225.	1.9	14
69	Effects of martensitic transformability and dynamic strain age hardenability on plasticity in metastable austenitic steels containing carbon. Journal of Materials Science, 2017, 52, 7868-7882.	1.7	38
70	Material property controlling non-propagating fatigue crack length of mechanically and physically short-crack based on Dugdale-model analysis. Theoretical and Applied Fracture Mechanics, 2017, 90, 193-202.	2.1	8
71	Mechanical-probabilistic evaluation of size effect of fatigue life using data obtained from single smooth specimen: An example using Fe-30Mn-4Si-2Al seismic damper alloy. Engineering Failure Analysis, 2017, 72, 34-47.	1.8	11
72	Characteristics of hydrogen-assisted intergranular fatigue crack growth in interstitial-free steel: role of plastic strain localization. International Journal of Fracture, 2017, 206, 123-130.	1.1	19

#	Article	IF	Citations
73	Fatigue crack non-propagation assisted by nitrogen-enhanced dislocation planarity in austenitic stainless steels. International Journal of Fatigue, 2017, 104, 158-170.	2.8	13
74	Threshold stress intensity factor range of a mechanically-long and microstructually-short crack perpendicular to an interface with plastic mismatch. Engineering Fracture Mechanics, 2017, 182, 287-302.	2.0	11
75	Effects of $\hat{l}\mu$ -martensitic transformation on crack tip deformation, plastic damage accumulation, and slip plane cracking associated with low-cycle fatigue crack growth. International Journal of Fatigue, 2017, 103, 533-545.	2.8	27
76	Effect of the state of carbon on ductility in Fe-0.017mass%C ferritic steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 701, 120-128.	2.6	9
77	Generalized evaluation method for determining transition crack length for microstructurally small to microstructurally large fatigue crack growth: Experimental definition, facilitation, and validation. International Journal of Fatigue, 2017, 95, 38-44.	2.8	14
78	Comparative study on small fatigue crack propagation between Fe-30Mn-3Si-3Al and Fe-23Mn-0.5C twinning-induced plasticity steels: Aspects of non-propagation of small fatigue cracks. International Journal of Fatigue, 2017, 94, 1-5.	2.8	27
79	Intrinsic Factors that Trigger the Coaxing Effect in Binary Fe–C Ferritic Alloys with a Focus on Strain Aging. ISIJ International, 2017, 57, 358-364.	0.6	10
80	Intrinsic Factors That Trigger the Coaxing Effect in Binary Fe-C Ferritic Alloys with a Focus on Strain Aging. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2017, 103, 660-666.	0.1	3
81	Characteristic Fatigue Crack Growth Behavior of Low Carbon Steel under Low-pressure Hydrogen Gas Atmosphere in an Ultra-low Frequency. ISIJ International, 2016, 56, 855-860.	0.6	8
82	Suppression Mechanism of Strain-age-hardening in Carbon Steel Associated with Hydrogen Uptake. ISIJ International, 2016, 56, 1656-1661.	0.6	6
83	Notch Sensitivity of the Fatigue Limit in High-Strength Steel. ISIJ International, 2016, 56, 1480-1486.	0.6	8
84	Fatigue characteristics of flame-retardant magnesium alloy. Keikinzoku/Journal of Japan Institute of Light Metals, 2016, 66, 221-225.	0.1	2
85	Measurement of local mechanical properties using multiple indentations by a special conical indenter and error analysis. Journal of Materials Research, 2016, 31, 259-273.	1.2	2
86	In situ microscopic observations of low-cycle fatigue-crack propagation in high-Mn austenitic alloys with deformation-induced \hat{l}_{μ} -martensitic transformation. Acta Materialia, 2016, 112, 326-336.	3.8	61
87	Elucidation of the effects of cementite morphology on damage formation during monotonic and cyclic tension in binary low carbon steels using in situ characterization. Materials Science & Description amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 667, 358-367.	2.6	13
88	Potential resistance to transgranular fatigue crack growth of Fe–C alloy with a supersaturated carbon clarified through FIB micro-notching technique. International Journal of Fatigue, 2016, 87, 1-5.	2.8	30
89	Relationship between hardness and fatigue limit focusing attention on the plastic strain similarity between indentation and fatigue crack growth. The Proceedings of Mechanical Engineering Congress Japan, 2016, 2016, G0300305.	0.0	0
90	Intergranular Fatigue Crack Initiation and its Associated Small Fatigue Crack Propagation in Water-quenched Fe-C Fully Ferritic Steel. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2016, 102, 268-273.	0.1	6

#	Article	IF	Citations
91	Non-propagation limit analysis of fatigue crack with Dugdale model. The Proceedings of Mechanical Engineering Congress Japan, 2016, 2016, G0400306.	0.0	0
92	Punching process effects on fatigue strength properties. The Proceedings of the Materials and Mechanics Conference, 2016, 2016, GS-05.	0.0	0
93	Importance of crack-propagation-induced $\hat{l}\mu$ -martensite in strain-controlled low-cycle fatigue of high-Mn austenitic steel. Philosophical Magazine Letters, 2015, 95, 303-311.	0.5	25
94	Characteristic Fatigue Crack Growth Behavior of Low Carbon Steel Under Low-pressure Hydrogen Gas Atmosphere in an Ultra-low Frequency. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2015, 101, 605-610.	0.1	0
95	Notch Sensitivity in Fatigue Limit of High Strength Steel. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2015, 101, 552-558.	0.1	1
96	Detection of Charged Hydrogen in Ferritic Steel through Cryogenic Secondary Ion Mass Spectrometry. ISIJ International, 2015, 55, 335-337.	0.6	13
97	Intergranular Fatigue Crack Initiation and Its Associated Small Fatigue Crack Propagation in Water-quenched Fe–C Fully Ferritic Steel. ISIJ International, 2015, 55, 2463-2468.	0.6	19
98	Effects of cementite morphology on short-fatigue-crack propagation in binary Fe–C steel. Philosophical Magazine Letters, 2015, 95, 384-391.	0.5	18
99	Proposed fatigue damage measurement parameter for shot-peened carbon steel based on fatigue crack growth behavior. International Journal of Fatigue, 2015, 74, 97-106.	2.8	2
100	Effect of internal hydrogen on very high cycle fatigue of precipitation-strengthened steel SUH660. International Journal of Fatigue, 2015, 70, 406-416.	2.8	1
101	Mechanical examination of crack length dependency and material dependency on threshold stress intensity factor range with Dugdale model. Engineering Fracture Mechanics, 2015, 135, 168-186.	2.0	25
102	Effects of hydrogen-altered yielding and workÂhardening on plastic-zone evolution: AÂfinite-element analysis. International Journal of Hydrogen Energy, 2015, 40, 9825-9837.	3.8	23
103	Factors affecting hydrogen-assisted cracking in a commercial tempered martensitic steel: Mn segregation, MnS, and the stress state around abnormal cracks. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 640, 72-81.	2.6	37
104	Identification method of fracture mode based on measurement of microscopic plastic deformation in a Mg cast alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 642, 113-116.	2.6	1
105	Effect of additional magnesium on mechanical and high-cycle fatigue properties of 6061-T6 alloy. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2015, 641, 263-273.	2.6	9
106	Tensile properties of precracked tempered martensitic steel specimens tested at ultralow strain rates in high-pressure hydrogen atmosphere. Philosophical Magazine Letters, 2015, 95, 260-268.	0.5	15
107	Suppression Mechanism of Strain-age Hardening in Carbon Steel Associated with Hydrogen Uptake. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2015, 101, 546-551.	0.1	1
108	Thermally activated processes of fatigue crack growth in steels. Philosophical Magazine Letters, 2014, 94, 95-102.	0.5	4

#	Article	IF	CITATIONS
109	Proposal for an engineering definition of a fatigue crack initiation unit for evaluating the fatigue limit on the basis of crystallographic analysis of pearlitic steel. International Journal of Fracture, 2014, 185, 17-29.	1.1	9
110	Fatigue strength characteristics evaluation of SUH660 considering small fatigue crack propagation behavior and hardness distribution. International Journal of Fatigue, 2014, 63, 1-11.	2.8	11
111	Role of eutectic silicon particles in fatigue crack initiation and propagation and fatigue strength characteristics of cast aluminum alloy A356. Engineering Fracture Mechanics, 2014, 115, 1-12.	2.0	32
112	Mesoscopic analysis of fatigue strength property of a modified 2618 aluminum alloy. International Journal of Fatigue, 2014, 59, 215-223.	2.8	6
113	Strain mapping with high spatial resolution across a wide observation range by digital image correlation on plastic replicas. Materials Characterization, 2014, 98, 140-146.	1.9	30
114	Fatigue limit investigation of 6061-T6 aluminum alloy in giga-cycle regime. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 614, 243-249.	2.6	26
115	A non-microstructural crack formation model for understanding fatigue life degradation in shot peened carbon steel under LCF loading. International Journal of Fatigue, 2014, 63, 110-117.	2.8	5
116	Evolution of residual stress redistribution associated with localized surface microcracking in shot-peened medium-carbon steel during fatigue test. International Journal of Fatigue, 2013, 55, 147-157.	2.8	57
117	Engineering definitions of small crack and long crack at fatigue limit under tensile mean stress and a prediction method for determining the fatigue limit of a cracked Mg alloy. International Journal of Fatigue, 2013, 56, 86-94.	2.8	14
118	Observation of small fatigue crack growth behavior in the extremely low growth rate region of low carbon steel in a hydrogen gas environment. International Journal of Fracture, 2013, 183, 223-240.	1.1	10
119	Small fatigue crack growth characteristics and fracture surface morphology of low carbon steel in hydrogen gas. International Journal of Fracture, 2013, 179, 147-156.	1.1	11
120	Pre-strain effect on fatigue strength characteristics of SUH660 plain specimens. International Journal of Fatigue, 2013, 55, 291-298.	2.8	13
121	Residual stress relaxation and low- and high-cycle fatigue behavior of shot-peened medium-carbon steel. International Journal of Fatigue, 2013, 56, 114-122.	2.8	104
122	Fatigue strength prediction for inhomogeneous face-centered cubic metal based on Vickers hardness. International Journal of Fatigue, 2013, 48, 48-54.	2.8	11
123	Simple calculation method for stress concentration and stress intensity of T-shaped member. International Journal of Mechanical Sciences, 2013, 75, 8-15.	3.6	3
124	Method for Assessing Applicability of an Artificial Flaw as a Small Initial Crack for Fatigue Limit Evaluation and Its Application to a Drill Hole and an FIB Processed Sharp Notch in Annealed 0.45% Carbon Steel. Journal of Testing and Evaluation, 2013, 41, 194-199.	0.4	5
125	An Investigation of Hydrogen Environment Effect on the Strain Aging of Low-Carbon Steel through Vickers Hardness Test. Journal of Testing and Evaluation, 2013, 41, 20120190.	0.4	1
126	Micro-Analyses of Small Cracks in 6061-T6 Aluminium Alloy Subjected to High-Cycle Fatigue. Key Engineering Materials, 2012, 525-526, 213-216.	0.4	0

#	Article	IF	CITATIONS
127	Evaluation of Notch Tensile Strength for High Strength Steel with Inclusions. Journal of Solid Mechanics and Materials Engineering, 2012, 6, 121-130.	0.5	0
128	Effects of Mechanical and Environmental Factors on the Notch Tensile Strength of 1,300MPa Class SCM435 High-Strength Steel in Hydrogen Gas. Journal of Solid Mechanics and Materials Engineering, 2012, 6, 191-200.	0.5	2
129	Effect of Hydrogen Exposure on the Notch Tensile Properties of High Strength Steel in Hydrogen Gas Environment. Journal of Solid Mechanics and Materials Engineering, 2012, 6, 265-277.	0.5	5
130	Initiation and Propagation Behaviors of Fatigue Cracks in 5056 Aluminum Alloy Studied by Rotating-Bending Tests with Smooth Specimen. Journal of Solid Mechanics and Materials Engineering, 2012, 6, 361-373.	0.5	3
131	Fatigue limit of new precipitation-hardened aluminium alloy with distinct fatigue crack propagation limit. International Journal of Fatigue, 2012, 44, 32-40.	2.8	13
132	Study on dominant mechanism of high-cycle fatigue life in 6061-T6 aluminum alloy through microanalyses of microstructurally small cracks. Acta Materialia, 2012, 60, 2554-2567.	3.8	57
133	Distinct fatigue crack propagation limit of new precipitation-hardened aluminium alloy. Scripta Materialia, 2012, 67, 49-52.	2.6	23
134	Evaluation of Fatigue Limit Characteristics of Lamellar Pearlitic Steel in Consideration of Microstructure. Zairyo/Journal of the Society of Materials Science, Japan, 2011, 60, 790-795.	0.1	11
135	Loading-Frequency Effects on Fatigue Crack Growth Behavior of a Low Carbon Steel JIS S10C in Hydrogen Gas Environment. Journal of Solid Mechanics and Materials Engineering, 2011, 5, 104-116.	0.5	5
136	Investigation of Mechanism for Intergranular Fatigue Crack Propagation of Low Carbon Steel JIS S10C in Hydrogen Gas Environment. Journal of Solid Mechanics and Materials Engineering, 2011, 5, 263-278.	0.5	10
137	Low Pressure Hydrogen Gas Effect on Extremely Low Fatigue Crack Growth from Small Blind Holes of SUS304 and SUS316L. Journal of Solid Mechanics and Materials Engineering, 2011, 5, 279-293.	0.5	1
138	Proposed Strength Evaluation Method for Casting Material with Defects (Using Non-combustible Mg) Tj ETQq0 0	OൃളൂBT /O	verlock 10 T
139	Evaluation of Estimation Method for Thermal Fatigue Crack Growth Rate in Epoxy Resin Composites. Journal of Solid Mechanics and Materials Engineering, 2011, 5, 546-557.	0.5	0
140	Microscopic Observation of the Brittle-Striation Formation Mechanism in Low Carbon Steel Fatigued in Hydrogen Gas (TEM and EBSD Observation Corresponding to Fractography). Journal of Solid Mechanics and Materials Engineering, 2011, 5, 179-190.	0.5	21
141	Strength Evaluation of Alumina Spray Coating (2nd Report, Proposal for Judgment of Crack) Tj ETQq1 1 0.784314 Engineering, 2011, 5, 191-208.	4 rgBT /Ov 0.5	erlock 10 Tf 1
140	Strength Evaluation of Alumina Spray Coating (4th Report, Consideration of Spray Structure) Tj ETQq0 0 0 rgBT /		
142	294-310.	0.5	1
143	Investigation of the Mechanism for Brittle-Striation Formation in Low Carbon Steel Fatigued in Hydrogen Gas (Fractographic Observation on Fracture Processes Visualized by Controlling Load) Tj ETQq1 1 0.78 370-385.	4314 rgBT 0.5	- /Overlock 1 25
144	Proposed Simple Determination Method for Welding Condition of Joint from Fatigue Limit Characteristics (1st Report: Application to TIG-Butt-Joint of Non-combustible Mg Alloy). Journal of Solid Mechanics and Materials Engineering, 2011, 5, 409-424.	0.5	1

#	Article	IF	CITATIONS
145	Strength Evaluation of Alumina Spray Coating (5th Report, Consideration of the Strength in Sprayed) Tj ETQq1 1 425-444.	0.784314 0.5	rgBT /Overl O
146	Characterization of dislocation structures around a mixed-mode fatigue crack tip in a single-crystalline iron–silicon alloy. Scripta Materialia, 2011, 64, 157-160.	2.6	6
147	On the micromechanism of hydrogen-assisted cracking in a single-crystalline iron–silicon alloy thin sheet. Scripta Materialia, 2011, 64, 537-540.	2.6	15
148	Effect of hydrogen on dislocation structures around a mixed-mode fatigue crack tip in a single-crystalline iron–silicon alloy. Scripta Materialia, 2011, 64, 721-724.	2.6	14
149	Prediction of fatigue limit reliability of high strength steel with deep notch under mean stress l m = 0. International Journal of Fracture, 2011, 168, 73-91.	1.1	3
150	Design review based on failure mode to visualise reliability problems in the development stage of mechanical products. International Journal of Vehicle Design, 2010, 53, 149.	0.1	15
151	Proposal of Simple Determination Method for Welding Condition of Joint from Fatigue Limit Characteristics: 1st Report, Application to TIG-Butt-Joint of Non-Combustible Mg Alloy. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2010, 76, 1626-1635.	0.2	0
152	Microscopic Observation of the Mechanism for Brittle Striation Formation in Low Carbon Steel Fatigued in Hydrogen Gas: TEM and EBSD Observations Corresponding to Fractography. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2010, 76, 1335-1342.	0.2	0
153	Microscopic characterization of hydrogen-induced quasi-brittle fatigue fracture in low-strength carbon steel. Materials Letters, 2010, 64, 2416-2419.	1.3	20
154	A consideration for using workers' heuristics to improve safety rules based on relationships between creative mental sets and rule-violating actions. Safety Science, 2010, 48, 878-884.	2.6	9
155	A combined environmental straining specimen holder for high-voltage electron microscopy. Ultramicroscopy, 2010, 110, 1420-1427.	0.8	5
156	Effect of Gaseous Hydrogen on Cyclic Slip Behavior Around a Fatigue Crack Tip in Fe-3.2wt.%Si Single-Crystalline Alloy. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2009, 75, 1082-1089.	0.2	0
157	EFFICACIOUS DESIGN REVIEW PROCESS INCLUDING ON-THE-JOB TRAINING IN FINDING MISUNDERSTAND ERRORS. International Journal of Reliability, Quality and Safety Engineering, 2009, 16, 281-302.	0.4	5
158	High-voltage electron-microscopic observation of cyclic slip behavior around a fatigue crack tip in an iron alloy. Scripta Materialia, 2009, 60, 717-720.	2.6	19
159	Hydrogen-induced slip localization around a quasi-brittle fatigue crack observed by high-voltage electron microscopy. Scripta Materialia, 2009, 61, 145-148.	2.6	26
160	SIMS analysis of low content hydrogen in commercially pure titanium. Journal of Materials Science, 2009, 44, 5692-5696.	1.7	11
161	Effects of Hydrogen Gas Environment on Fatigue Strength at 107 cycles in Plain Specimen of Type 316L Stainless Steel. Journal of Solid Mechanics and Materials Engineering, 2009, 3, 72-83.	0.5	1
162	Strength Evaluation of Alumina's Spray Coating : 5th Report, Consideration of the Strength in Sprayed Structure for Thermal Stress. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2009, 75, 1177-1186.	0.2	0

#	Article	IF	CITATIONS
163	Low Pressure Hydrogen Gas Effect on Extremely Low Fatigue Crack Growth from Small Blind Holes of SUS304 and SUS316L(<special issue="">Solid Mechanics Indispensable for Automobile Engineering). Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2009, 75, 1309-1318.</special>	0.2	O
164	Proposal of Strength Evaluation Method in Casting Material with Defect: Using Si-Added Noncombustible Mg Alloy(<special issue="">Solid Mechanics Indispensable for Automobile Engineering). Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2009, 75, 1326-1333.</special>	0.2	1
165	Strength Evaluation of Alumina's Spray Coating : 2nd Report, Proposal for Judgments of Crack Interference and Correction Methods of Crack Shape(<special issue="">Thermal and Mechanical) Tj ETQq1 1 0.</special>	784314 rg 0.2	gBT /Overlo
166	Hen/Transactions of the Japan Society of Mechanical Engineers, Part A. 2009, 75, 845-854. Strength Evaluation of Alumina's Spray Coating: 3rd Report, Proposal for the Safety Design of Fracture Strength with Consideration of Cracks Interference (< Special Issue> Thermal and) Tj ETQq0 0 0 rgBT	/Overlock	10 Tf 50 62
167	Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2009, 75, 855-865. Evaluation of Notch Tensile Strength for High Strength Steel with Inclusions: In Case of Casting High Speed Steel. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2009, 75, 1764-1770.	0.2	0
168	Effects of Gaseous Hydrogen on Fatigue Crack Growth Behavior of Low Carbon Steel., 2009,,.		0
169	A toughening and strengthening technique of hybrid composites with non-woven tissue. Journal of Materials Processing Technology, 2008, 207, 21-29.	3.1	33
170	Prediction of high-cycle fatigue life reliability of aluminum cast alloy from statistical characteristics of defects at meso-scale. International Journal of Mechanical Sciences, 2008, 50, 152-162.	3.6	10
171	Fatigue Strength Characteristics of Non-Combustible Mg Alloy (2nd Report, Effect of Mean Stress on) Tj ETQq1 1 Mechanical Engineers, Part A, 2008, 74, 115-121.	0.784314 0.2	rgBT /Over 3
172	Quantitative Evaluation of Heat Crack Initiation Condition Under Thermal Shock. Journal of Solid Mechanics and Materials Engineering, 2008, 2, 128-136.	0.5	1
173	Microscopic Deformation Behavior Observation of Lamellar Pearlite during Plastic Deformation. Journal of Solid Mechanics and Materials Engineering, 2008, 2, 137-144.	0.5	O
174	Fatigue Strength Characteristics of Non-Combustible Mg Alloy. Journal of Solid Mechanics and Materials Engineering, 2008, 2, 763-770.	0.5	3
175	Prediction of the Fatigue Limit of Prestrained Carbon Steel Under Tensile Mean Stress. Journal of ASTM International, 2008, 5, 1-13.	0.2	O
176	Effect of Prestrain on Fatigue Crack Growth of Age-Hardened Al 6061-T6. Journal of ASTM International, 2008, 5, 101549.	0.2	2
177	Influence of Testing Frequency on Fatigue Crack Growth of 6061-T6 Aluminum Alloy in Hydrogen Gas Environment. Key Engineering Materials, 2007, 353-358, 174-177.	0.4	2
178	Investigation of Local Hydrogen Distribution Around Fatigue Crack Tip on a Type 304 Stainless Steel with Secondary Ion Mass Spectrometry and the Hydrogen Micro-print Technique. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2007, 73, 788-795.	0.2	3
179	Effects of a Hydrogen Gas Environment on Fatigue Crack Growth of a Stable Austenitic Stainless Steel. Journal of Solid Mechanics and Materials Engineering, 2007, 1, 263-274.	0.5	11
180	Method for the evaluation of mode I fatigue crack growth rate of prestrained materials. International Journal of Fatigue, 2007, 29, 1737-1743.	2.8	4

#	Article	IF	Citations
181	Quantitative prediction for acceptance limit value to society for the service quality of an independent system. Simulation Modelling Practice and Theory, 2007, 15, 1103-1119.	2.2	1
182	A practical stress analysis for predicting fatigue limit of metal with axisymmetric complex surface. International Journal of Fracture, 2007, 143, 355-367.	1.1	7
183	OS4-5-5 Fatigue Strength Characteristics of Non-combustible Mg Alloy. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics, 2007, 2007.6, _OS4-5-5-1OS4-5-5-4.	0.0	0
184	Vibration fatigue reliability of BGA-IC package with Pb-free solder and Pb–Sn solder. Microelectronics Reliability, 2006, 46, 459-466.	0.9	63
185	A Study on Managing Cycle of Measures for Incident Based on Visualizing Problems. , 2005, , 33.		0
186	Reliability Problem Prevention Method of Stimulating Creativity and Visualizing Problems (2nd Report,) Tj ETQq0 Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 2005, 71, 2020-2027.	0 0 rgBT 0.2	Overlock 10
187	Estimation for fatigue limit reliability of a metal with inhomogeneities under stress ratio. International Journal of Mechanical Sciences, 2005, 47, 230-250.	3.6	8
188	Fatigue limit reliability of axisymmetric complex surface. International Journal of Fracture, 2005, 131, 59-78.	1.1	16
189	Fatigue Limit of Steel with an Arbitrary Crack under a Stress Controlled Constant with a Positive Mean Stress. International Journal of Fracture, 2005, 134, 109-126.	1.1	5
190	Effects of Hydrogen Gas Environment on Non-Propagation Phenomena of a Type 304 Austenitic Stainless Steel. Key Engineering Materials, 2005, 297-300, 927-932.	0.4	6
191	Influence of Inclusions on Fatigue Characteristics of Non-Combustible Mg Alloy. Materials Science Forum, 2005, 482, 359-362.	0.3	9
192	Residual Compressive Failure Characteristics of Hybrid Composites with Nonwoven Carbon Tissue after Indentation Damage. Journal of Composite Materials, 2004, 38, 1461-1477.	1.2	4
193	Quantitative evaluation of the fatigue limit of a metal with an arbitrary crack under a stress controlled condition – Stress Ratio R=-1. International Journal of Fracture, 2004, 129, 21-38.	1.1	18
194	Fatigue Behavior Characteristics of Hybrid Composites with Nonwoven Carbon Tissue. Journal of Composite Materials, 2003, 37, 253-268.	1.2	12
195	Damage Mechanism of Hybrid Composites with Nonwoven Carbon Tissue Subjected to Quasi-static Indentation Loads. Journal of Composite Materials, 2003, 37, 333-349.	1.2	20
196	Static Behavior Characteristics of Hybrid Composites with Nonwoven Carbon Tissue. Journal of Composite Materials, 2003, 37, 233-252.	1.2	12
197	Effect of Interleaved Non-Woven Carbon Tissue on Interlaminar Fracture Toughness of Laminated Composites: Part I – Mode II. Journal of Composite Materials, 2002, 36, 2153-2168.	1.2	53
198	Effect of Interleaved Non-Woven Carbon Tissue on Interlaminar Fracture Toughness of Laminated Composites: Part II – Mode I. Journal of Composite Materials, 2002, 36, 2169-2181.	1.2	40

#	Article	IF	CITATIONS
199	Shear Characteristics of Hybrid Composites with Non-Woven Carbon Tissue. JSME International Journal Series A-Solid Mechanics and Material Engineering, 2001, 44, 535-541.	0.4	7
200	An Analysis of a Quarter-Infinite Solid with a Corner Crack of Arbitrary Shape. International Journal of Fracture, 2001, 112, 163-181.	1.1	4
201	Application Limit of Linear Notch Mechanics Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1995, 61, 2044-2051.	0.2	5
202	An analysis of a semi-infinite solid with three-dimensional cracks. Engineering Fracture Mechanics, 1995, 52, 1-14.	2.0	8
203	On the cumulative fatigue damage in short carbon fiber reinforced poly-ether-ether-ketone. Engineering Fracture Mechanics, 1995, 51, 457-468.	2.0	7
204	New Method of Analysis of Three-Dimensional Crack Problems. 1st Report. Basic Theory and Applications to Infinite Body Problems Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1993, 59, 1270-1278.	0.2	4
205	New Method of Analysis of Three-Dimensional Crack Problems. 2nd Report. Application to Semi-Infinite Body Problems with an Arbitrary Surface or Internal Crack under Complex Loading Conditions Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1993, 59, 1279-1286.	0.2	5
206	Torsional Fatigue Process in Short Carbon-Fiber Reinforced Polyamid 6.6. Comparison with Fatigue Process of Rotating Bending Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1992, 58, 1555-1560.	0.2	0
207	Fatigue Characteristics of Plain and Notched Specimens of SiC-Whisker-reinforced Aluminum Alloy in Comparison with Aluminum Alloy Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1992, 58, 1765-1771.	0.2	0
208	Fatigue Strength of Spheroidal Graphite Cast Iron in Cylindrical Notched Bar Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1992, 58, 2280-2286.	0.2	3
209	Fatigue Strength of Plain and Notched Specimens of Short Carbon-Fiber Reinforced Poly-Ether-Ether-Ketone (In Comparison with Poly-Ether-Ether-Ketone) Zairyo/Journal of the Society of Materials Science, Japan, 1992, 41, 740-745.	0.1	6
210	Fatigue strength in 3 kinds of carbon steels having nearly equal sizes of ferrite Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1990, 56, 687-693.	0.2	8
211	Corrosion fatigue process of annealed 0.50% carbon steel under roatating bending Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1989, 55, 386-391.	0.2	4
212	Semi-infinite body with a drill-hole shaped pit under tension Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1988, 54, 977-982.	0.2	9
213	Examination of linear notch mechanics by means of FEM Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1985, 51, 1717-1725.	0.2	3
214	Reliability Problem Prevention Method for Automotive Components - Development of GD ³ Activity and DRBFM (Design Review Based on Failure Mode), 0, , .		9
215	Small Fatigue Crack Growth Behavior from Artificial Notch with Focused Ion Beam in Annealed 0.45% Carbon Steel. Key Engineering Materials, 0, 488-489, 319-322.	0.4	0
216	Loading Frequency Effects on the Fatigue Crack Growth Rate and Fracture Surface Morphology of Low Carbon Steel in Case of Long-Term Use in Hydrogen Gas. Key Engineering Materials, 0, 488-489, 323-326.	0.4	0

#	Article	IF	CITATIONS
217	Effect of Friction Stir Welding Condition on Fatigue Limit of Welded Non-Combustible Mg Alloy. Key Engineering Materials, 0, 488-489, 311-314.	0.4	0
218	Giga-Cycle Property of a New Age-Hardened Aluminium Alloy Containing Excess Solute Magnesium. Key Engineering Materials, 0, 577-578, 293-296.	0.4	0
219	Analysis of Small Fatigue Crack in Al-Mg-Si Aluminum Alloy. Materials Science Forum, 0, 794-796, 313-318.	0.3	1
220	Investigation on Mode I Propagation Behavior of Fatigue Crack in Precipitation-Hardened Aluminum Alloy with Different Mg Content. Materials Science Forum, 0, 889, 143-147.	0.3	2