Hiroshi Noguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6912212/publications.pdf Version: 2024-02-01

Нировни Мосисни

#	Article	IF	CITATIONS
1	Bone-like crack resistance in hierarchical metastable nanolaminate steels. Science, 2017, 355, 1055-1057.	6.0	297
2	Residual stress relaxation and low- and high-cycle fatigue behavior of shot-peened medium-carbon steel. International Journal of Fatigue, 2013, 56, 114-122.	2.8	104
3	Vibration fatigue reliability of BGA-IC package with Pb-free solder and Pb–Sn solder. Microelectronics Reliability, 2006, 46, 459-466.	0.9	63
4	In situ microscopic observations of low-cycle fatigue-crack propagation in high-Mn austenitic alloys with deformation-induced Îμ-martensitic transformation. Acta Materialia, 2016, 112, 326-336.	3.8	61
5	Study on dominant mechanism of high-cycle fatigue life in 6061-T6 aluminum alloy through microanalyses of microstructurally small cracks. Acta Materialia, 2012, 60, 2554-2567.	3.8	57
6	Evolution of residual stress redistribution associated with localized surface microcracking in shot-peened medium-carbon steel during fatigue test. International Journal of Fatigue, 2013, 55, 147-157.	2.8	57
7	Planar slip-driven fatigue crack initiation and propagation in an equiatomic CrMnFeCoNi high-entropy alloy. International Journal of Fatigue, 2020, 133, 105418.	2.8	55
8	Effect of Interleaved Non-Woven Carbon Tissue on Interlaminar Fracture Toughness of Laminated Composites: Part I – Mode II. Journal of Composite Materials, 2002, 36, 2153-2168.	1.2	53
9	Effect of Interleaved Non-Woven Carbon Tissue on Interlaminar Fracture Toughness of Laminated Composites: Part II – Mode I. Journal of Composite Materials, 2002, 36, 2169-2181.	1.2	40
10	Effects of martensitic transformability and dynamic strain age hardenability on plasticity in metastable austenitic steels containing carbon. Journal of Materials Science, 2017, 52, 7868-7882.	1.7	38
11	Factors affecting hydrogen-assisted cracking in a commercial tempered martensitic steel: Mn segregation, MnS, and the stress state around abnormal cracks. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 640, 72-81.	2.6	37
12	A toughening and strengthening technique of hybrid composites with non-woven tissue. Journal of Materials Processing Technology, 2008, 207, 21-29.	3.1	33
13	Role of eutectic silicon particles in fatigue crack initiation and propagation and fatigue strength characteristics of cast aluminum alloy A356. Engineering Fracture Mechanics, 2014, 115, 1-12.	2.0	32
14	Strain mapping with high spatial resolution across a wide observation range by digital image correlation on plastic replicas. Materials Characterization, 2014, 98, 140-146.	1.9	30
15	Potential resistance to transgranular fatigue crack growth of Fe–C alloy with a supersaturated carbon clarified through FIB micro-notching technique. International Journal of Fatigue, 2016, 87, 1-5.	2.8	30
16	Gaseous hydrogen embrittlement of a Ni-free austenitic stainless steel containing 1 mass% nitrogen: Effects of nitrogen-enhanced dislocation planarity. International Journal of Hydrogen Energy, 2020, 45, 10209-10218.	3.8	30
17	Effects of ε-martensitic transformation on crack tip deformation, plastic damage accumulation, and slip plane cracking associated with low-cycle fatigue crack growth. International Journal of Fatigue, 2017, 103, 533-545.	2.8	27
18	Comparative study on small fatigue crack propagation between Fe-30Mn-3Si-3Al and Fe-23Mn-0.5C twinning-induced plasticity steels: Aspects of non-propagation of small fatigue cracks. International Journal of Fatigue, 2017, 94, 1-5.	2.8	27

#	Article	IF	CITATIONS
19	Hydrogen-induced slip localization around a quasi-brittle fatigue crack observed by high-voltage electron microscopy. Scripta Materialia, 2009, 61, 145-148.	2.6	26
20	Fatigue limit investigation of 6061-T6 aluminum alloy in giga-cycle regime. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 614, 243-249.	2.6	26
21	Investigation of the Mechanism for Brittle-Striation Formation in Low Carbon Steel Fatigued in Hydrogen Gas (Fractographic Observation on Fracture Processes Visualized by Controlling Load) Tj ETQq1 1 0.78	34314 rgB 0.5	T /Overlock 1
22	370-385. Importance of crack-propagation-induced ε-martensite in strain-controlled low-cycle fatigue of high-Mn austenitic steel. Philosophical Magazine Letters, 2015, 95, 303-311.	0.5	25
23	Mechanical examination of crack length dependency and material dependency on threshold stress intensity factor range with Dugdale model. Engineering Fracture Mechanics, 2015, 135, 168-186.	2.0	25
24	Crystallographic selection rule for the propagation mode of microstructurally small fatigue crack in a laminated Ti-6Al-4V alloy: Roles of basal and pyramidal slips. International Journal of Fatigue, 2019, 128, 105200.	2.8	25
25	Distinct fatigue crack propagation limit of new precipitation-hardened aluminium alloy. Scripta Materialia, 2012, 67, 49-52.	2.6	23
26	Effects of hydrogen-altered yielding and workÂhardening on plastic-zone evolution: AÂfinite-element analysis. International Journal of Hydrogen Energy, 2015, 40, 9825-9837.	3.8	23
27	Underlying interstitial carbon concentration dependence of transgranular fatigue crack resistance in Fe-C ferritic steels: The kinetic effect viewpoint. International Journal of Fatigue, 2017, 98, 101-110.	2.8	23
28	Microscopic Observation of the Brittle-Striation Formation Mechanism in Low Carbon Steel Fatigued in Hydrogen Gas (TEM and EBSD Observation Corresponding to Fractography). Journal of Solid Mechanics and Materials Engineering, 2011, 5, 179-190.	0.5	21
29	Impact of Mn–C couples on fatigue crack growth in austenitic steels: Is the attractive atomic interaction negative or positive?. International Journal of Fatigue, 2017, 99, 1-12.	2.8	21
30	Damage Mechanism of Hybrid Composites with Nonwoven Carbon Tissue Subjected to Quasi-static Indentation Loads. Journal of Composite Materials, 2003, 37, 333-349.	1.2	20
31	Microscopic characterization of hydrogen-induced quasi-brittle fatigue fracture in low-strength carbon steel. Materials Letters, 2010, 64, 2416-2419.	1.3	20
32	Fatigue crack growth behavior of JIS SCM440 steel near fatigue threshold in 9-MPa hydrogen gas environment. International Journal of Hydrogen Energy, 2017, 42, 13158-13170.	3.8	20
33	High-voltage electron-microscopic observation of cyclic slip behavior around a fatigue crack tip in an iron alloy. Scripta Materialia, 2009, 60, 717-720.	2.6	19
34	Intergranular Fatigue Crack Initiation and Its Associated Small Fatigue Crack Propagation in Water-quenched Fe–C Fully Ferritic Steel. ISIJ International, 2015, 55, 2463-2468.	0.6	19
35	Characteristics of hydrogen-assisted intergranular fatigue crack growth in interstitial-free steel: role of plastic strain localization. International Journal of Fracture, 2017, 206, 123-130.	1.1	19
36	Visualization of dislocations through electron channeling contrast imaging at fatigue crack tip, interacting with pre-existing dislocations. Materials Research Letters, 2018, 6, 61-66.	4.1	19

#	Article	IF	CITATIONS
37	Quantitative evaluation of the fatigue limit of a metal with an arbitrary crack under a stress controlled condition $\hat{a} \in Stress$ Ratio R=-1. International Journal of Fracture, 2004, 129, 21-38.	1.1	18
38	Effects of cementite morphology on short-fatigue-crack propagation in binary Fe–C steel. Philosophical Magazine Letters, 2015, 95, 384-391.	0.5	18
39	Fatigue limit reliability of axisymmetric complex surface. International Journal of Fracture, 2005, 131, 59-78.	1.1	16
40	Dislocation motion at a fatigue crack tip in a high-nitrogen steel clarified through in situ electron channeling contrast imaging. Materials Characterization, 2019, 158, 109930.	1.9	16
41	Design review based on failure mode to visualise reliability problems in the development stage of mechanical products. International Journal of Vehicle Design, 2010, 53, 149.	0.1	15
42	On the micromechanism of hydrogen-assisted cracking in a single-crystalline iron–silicon alloy thin sheet. Scripta Materialia, 2011, 64, 537-540.	2.6	15
43	Tensile properties of precracked tempered martensitic steel specimens tested at ultralow strain rates in high-pressure hydrogen atmosphere. Philosophical Magazine Letters, 2015, 95, 260-268.	0.5	15
44	Hydrogen-assisted failure in a bimodal twinning-induced plasticity steel: Delamination events and damage evolution. International Journal of Hydrogen Energy, 2018, 43, 2492-2502.	3.8	15
45	Effect of hydrogen on dislocation structures around a mixed-mode fatigue crack tip in a single-crystalline iron–silicon alloy. Scripta Materialia, 2011, 64, 721-724.	2.6	14
46	Engineering definitions of small crack and long crack at fatigue limit under tensile mean stress and a prediction method for determining the fatigue limit of a cracked Mg alloy. International Journal of Fatigue, 2013, 56, 86-94.	2.8	14
47	Multiscale in situ deformation experiments: A sequential process from strain localization to failure in a laminated Ti-6Al-4V alloy. Materials Characterization, 2017, 128, 217-225.	1.9	14
48	Generalized evaluation method for determining transition crack length for microstructurally small to microstructurally large fatigue crack growth: Experimental definition, facilitation, and validation. International Journal of Fatigue, 2017, 95, 38-44.	2.8	14
49	Fatigue crack propagation modes: plastic deformation mode and damage accumulation mode. International Journal of Fracture, 2020, 222, 111-122.	1.1	14
50	Fatigue limit of new precipitation-hardened aluminium alloy with distinct fatigue crack propagation limit. International Journal of Fatigue, 2012, 44, 32-40.	2.8	13
51	Pre-strain effect on fatigue strength characteristics of SUH660 plain specimens. International Journal of Fatigue, 2013, 55, 291-298.	2.8	13
52	Detection of Charged Hydrogen in Ferritic Steel through Cryogenic Secondary Ion Mass Spectrometry. ISIJ International, 2015, 55, 335-337.	0.6	13
53	Elucidation of the effects of cementite morphology on damage formation during monotonic and cyclic tension in binary low carbon steels using in situ characterization. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 667, 358-367.	2.6	13
54	Fatigue crack non-propagation assisted by nitrogen-enhanced dislocation planarity in austenitic stainless steels. International Journal of Fatigue, 2017, 104, 158-170.	2.8	13

#	Article	IF	CITATIONS
55	Fatigue Behavior Characteristics of Hybrid Composites with Nonwoven Carbon Tissue. Journal of Composite Materials, 2003, 37, 253-268.	1.2	12
56	Static Behavior Characteristics of Hybrid Composites with Nonwoven Carbon Tissue. Journal of Composite Materials, 2003, 37, 233-252.	1.2	12
57	Temperature dependence of transgranular fatigue crack resistance in interstitial-free steel and Fe-C steels with supersaturated carbon: Effects of dynamic strain aging and dynamic precipitation. International Journal of Fatigue, 2018, 110, 1-9.	2.8	12
58	Non-propagating fatigue cracks in austenitic steels with a micro-notch: Effects of dynamic strain aging, martensitic transformation, and microstructural hardness heterogeneity. International Journal of Fatigue, 2018, 113, 359-366.	2.8	12
59	Microstructural hardness heterogeneity triggers fatigue crack non-propagation in as-hot-rolled Fe-30Mn-3Si-3Al twinning-induced plasticity steel. International Journal of Fatigue, 2018, 108, 18-24.	2.8	12
60	Effects of a Hydrogen Gas Environment on Fatigue Crack Growth of a Stable Austenitic Stainless Steel. Journal of Solid Mechanics and Materials Engineering, 2007, 1, 263-274.	0.5	11
61	SIMS analysis of low content hydrogen in commercially pure titanium. Journal of Materials Science, 2009, 44, 5692-5696.	1.7	11
62	Evaluation of Fatigue Limit Characteristics of Lamellar Pearlitic Steel in Consideration of Microstructure. Zairyo/Journal of the Society of Materials Science, Japan, 2011, 60, 790-795.	0.1	11
63	Small fatigue crack growth characteristics and fracture surface morphology of low carbon steel in hydrogen gas. International Journal of Fracture, 2013, 179, 147-156.	1.1	11
64	Fatigue strength prediction for inhomogeneous face-centered cubic metal based on Vickers hardness. International Journal of Fatigue, 2013, 48, 48-54.	2.8	11
65	Fatigue strength characteristics evaluation of SUH660 considering small fatigue crack propagation behavior and hardness distribution. International Journal of Fatigue, 2014, 63, 1-11.	2.8	11
66	Mechanical-probabilistic evaluation of size effect of fatigue life using data obtained from single smooth specimen: An example using Fe-30Mn-4Si-2Al seismic damper alloy. Engineering Failure Analysis, 2017, 72, 34-47.	1.8	11
67	Threshold stress intensity factor range of a mechanically-long and microstructually-short crack perpendicular to an interface with plastic mismatch. Engineering Fracture Mechanics, 2017, 182, 287-302.	2.0	11
68	Small fatigue crack growth in a high entropy alloy. Procedia Structural Integrity, 2018, 13, 1065-1070.	0.3	11
69	Mode I fatigue crack growth induced by strain-aging in precipitation-hardened aluminum alloys. Theoretical and Applied Fracture Mechanics, 2019, 104, 102340.	2.1	11
70	Prediction of high-cycle fatigue life reliability of aluminum cast alloy from statistical characteristics of defects at meso-scale. International Journal of Mechanical Sciences, 2008, 50, 152-162.	3.6	10
71	Investigation of Mechanism for Intergranular Fatigue Crack Propagation of Low Carbon Steel JIS S10C in Hydrogen Gas Environment. Journal of Solid Mechanics and Materials Engineering, 2011, 5, 263-278.	0.5	10
72	Observation of small fatigue crack growth behavior in the extremely low growth rate region of low carbon steel in a hydrogen gas environment. International Journal of Fracture, 2013, 183, 223-240.	1.1	10

#	Article	IF	CITATIONS
73	Intrinsic Factors that Trigger the Coaxing Effect in Binary Fe–C Ferritic Alloys with a Focus on Strain Aging. ISIJ International, 2017, 57, 358-364.	0.6	10
74	Semi-infinite body with a drill-hole shaped pit under tension Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1988, 54, 977-982.	0.2	9
75	Reliability Problem Prevention Method for Automotive Components - Development of GD ³ Activity and DRBFM (Design Review Based on Failure Mode) , 0, , .		9
76	Influence of Inclusions on Fatigue Characteristics of Non-Combustible Mg Alloy. Materials Science Forum, 2005, 482, 359-362.	0.3	9
77	A consideration for using workers' heuristics to improve safety rules based on relationships between creative mental sets and rule-violating actions. Safety Science, 2010, 48, 878-884.	2.6	9
78	Proposal for an engineering definition of a fatigue crack initiation unit for evaluating the fatigue limit on the basis of crystallographic analysis of pearlitic steel. International Journal of Fracture, 2014, 185, 17-29.	1.1	9
79	Effect of additional magnesium on mechanical and high-cycle fatigue properties of 6061-T6 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 641, 263-273.	2.6	9
80	Effect of the state of carbon on ductility in Fe-0.017mass%C ferritic steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 701, 120-128.	2.6	9
81	Ductile-to-brittle transition in tensile failure due to shear-affected zone with a stress-concentration source: a comparative study on punched-plate tensile-failure characteristics of precipitation-hardened and dual-phase steels. International Journal of Fracture, 2018, 212, 237-248.	1.1	9
82	ECCI Characterization of Dislocation Structures at a Non-propagating Fatigue Crack Tip: Toward Understanding the Effects of Mn-C and Cr-N Couples on Crack Growth Resistance. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 426-435.	1.1	9
83	Effect of strain localization on fatigue properties of precipitation-hardened steel with an arbitrarily length crack. International Journal of Fatigue, 2021, 143, 106017.	2.8	9
84	Fatigue strength in 3 kinds of carbon steels having nearly equal sizes of ferrite Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1990, 56, 687-693.	0.2	8
85	An analysis of a semi-infinite solid with three-dimensional cracks. Engineering Fracture Mechanics, 1995, 52, 1-14.	2.0	8
86	Estimation for fatigue limit reliability of a metal with inhomogeneities under stress ratio. International Journal of Mechanical Sciences, 2005, 47, 230-250.	3.6	8
87	Characteristic Fatigue Crack Growth Behavior of Low Carbon Steel under Low-pressure Hydrogen Gas Atmosphere in an Ultra-low Frequency. ISIJ International, 2016, 56, 855-860.	0.6	8
88	Notch Sensitivity of the Fatigue Limit in High-Strength Steel. ISIJ International, 2016, 56, 1480-1486.	0.6	8
89	Material property controlling non-propagating fatigue crack length of mechanically and physically short-crack based on Dugdale-model analysis. Theoretical and Applied Fracture Mechanics, 2017, 90, 193-202.	2.1	8
90	Effect of shear-affected zone on fatigue crack propagation mode. International Journal of Fatigue, 2018, 116, 36-47.	2.8	8

#	Article	IF	CITATIONS
91	Fatigue Resistance of Laminated and Non-laminated TRIP-maraging Steels: Crack Roughness vs Tensile Strength. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 1142-1145.	1.1	8
92	Simplified stress field determination for an inclined crack and interaction between two cracks under tension. Theoretical and Applied Fracture Mechanics, 2020, 107, 102561.	2.1	8
93	On the cumulative fatigue damage in short carbon fiber reinforced poly-ether-ether-ketone. Engineering Fracture Mechanics, 1995, 51, 457-468.	2.0	7
94	Shear Characteristics of Hybrid Composites with Non-Woven Carbon Tissue. JSME International Journal Series A-Solid Mechanics and Material Engineering, 2001, 44, 535-541.	0.4	7
95	A practical stress analysis for predicting fatigue limit of metal with axisymmetric complex surface. International Journal of Fracture, 2007, 143, 355-367.	1.1	7
96	Plastic deformation sequence and strain gradient characteristics of hydrogen-induced delayed crack propagation in single-crystalline Fe–Si alloy. Scripta Materialia, 2020, 178, 99-103.	2.6	7
97	Influence of nanotwins on hydrogen embrittlement of TWIP (twinning-induced plasticity) steel processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 783, 139273.	2.6	7
98	Notch shape dependence of fatigue crack extension in equiatomic CrMnFeCoNi high-entropy alloy. International Journal of Fatigue, 2021, 153, 106481.	2.8	7
99	Fatigue Strength of Plain and Notched Specimens of Short Carbon-Fiber Reinforced Poly-Ether-Ether-Ketone (In Comparison with Poly-Ether-Ether-Ketone) Zairyo/Journal of the Society of Materials Science, Japan, 1992, 41, 740-745.	0.1	6
100	Effects of Hydrogen Gas Environment on Non-Propagation Phenomena of a Type 304 Austenitic Stainless Steel. Key Engineering Materials, 2005, 297-300, 927-932.	0.4	6
101	Characterization of dislocation structures around a mixed-mode fatigue crack tip in a single-crystalline iron–silicon alloy. Scripta Materialia, 2011, 64, 157-160.	2.6	6
102	Mesoscopic analysis of fatigue strength property of a modified 2618 aluminum alloy. International Journal of Fatigue, 2014, 59, 215-223.	2.8	6
103	Suppression Mechanism of Strain-age-hardening in Carbon Steel Associated with Hydrogen Uptake. ISIJ International, 2016, 56, 1656-1661.	0.6	6
104	Effect of state of carbon on fatigue properties and dislocation structure of Fe-0.017mass%C alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 732, 212-219.	2.6	6
105	Intergranular Fatigue Crack Initiation and its Associated Small Fatigue Crack Propagation in Water-quenched Fe-C Fully Ferritic Steel. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2016, 102, 268-273.	0.1	6
106	New Method of Analysis of Three-Dimensional Crack Problems. 2nd Report. Application to Semi-Infinite Body Problems with an Arbitrary Surface or Internal Crack under Complex Loading Conditions Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1993, 59, 1279-1286	0.2	5
107	Application Limit of Linear Notch Mechanics Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1995, 61, 2044-2051.	0.2	5
108	Fatigue Limit of Steel with an Arbitrary Crack under a Stress Controlled Constant with a Positive Mean Stress. International Journal of Fracture, 2005, 134, 109-126.	1.1	5

#	Article	IF	CITATIONS
109	EFFICACIOUS DESIGN REVIEW PROCESS INCLUDING ON-THE-JOB TRAINING IN FINDING MISUNDERSTAND ERRORS. International Journal of Reliability, Quality and Safety Engineering, 2009, 16, 281-302.	0.4	5
110	A combined environmental straining specimen holder for high-voltage electron microscopy. Ultramicroscopy, 2010, 110, 1420-1427.	0.8	5
111	Loading-Frequency Effects on Fatigue Crack Growth Behavior of a Low Carbon Steel JIS S10C in Hydrogen Gas Environment. Journal of Solid Mechanics and Materials Engineering, 2011, 5, 104-116.	0.5	5
112	Effect of Hydrogen Exposure on the Notch Tensile Properties of High Strength Steel in Hydrogen Gas Environment. Journal of Solid Mechanics and Materials Engineering, 2012, 6, 265-277.	0.5	5
113	A non-microstructural crack formation model for understanding fatigue life degradation in shot peened carbon steel under LCF loading. International Journal of Fatigue, 2014, 63, 110-117.	2.8	5
114	Fatigue Behavior of Fe-Cr-Ni-based Metastable Austenitic Steels with an Identical Tensile Strength and Different Solute Carbon Contents. ISIJ International, 2018, 58, 1910-1919.	0.6	5
115	Crystallographic orientation-dependent growth mode of microstructurally fatigue small crack in a laminated Ti–6Al–4V alloy. Procedia Structural Integrity, 2018, 13, 694-699.	0.3	5
116	Revealing the mechanism of critical root radius in notch fatigue limit based on crack closure concept. International Journal of Fatigue, 2020, 130, 105261.	2.8	5
117	Method for Assessing Applicability of an Artificial Flaw as a Small Initial Crack for Fatigue Limit Evaluation and Its Application to a Drill Hole and an FIB Processed Sharp Notch in Annealed 0.45% Carbon Steel. Journal of Testing and Evaluation, 2013, 41, 194-199.	0.4	5
118	Interaction analysis between strain concentration and strain localization in cracked body. Fatigue and Fracture of Engineering Materials and Structures, 2022, 45, 1406-1420.	1.7	5
119	Corrosion fatigue process of annealed 0.50% carbon steel under roatating bending Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1989, 55, 386-391.	0.2	4
120	New Method of Analysis of Three-Dimensional Crack Problems. 1st Report. Basic Theory and Applications to Infinite Body Problems Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1993, 59, 1270-1278.	0.2	4
121	An Analysis of a Quarter-Infinite Solid with a Corner Crack of Arbitrary Shape. International Journal of Fracture, 2001, 112, 163-181.	1.1	4
122	Residual Compressive Failure Characteristics of Hybrid Composites with Nonwoven Carbon Tissue after Indentation Damage. Journal of Composite Materials, 2004, 38, 1461-1477.	1.2	4
123	Method for the evaluation of mode I fatigue crack growth rate of prestrained materials. International Journal of Fatigue, 2007, 29, 1737-1743.	2.8	4
124	Thermally activated processes of fatigue crack growth in steels. Philosophical Magazine Letters, 2014, 94, 95-102.	0.5	4
125	Re-examination of fatigue crack propagation mechanism under cyclic Mode II loading. Procedia Structural Integrity, 2018, 13, 1026-1031.	0.3	4
126	Shallow crack effect on evaluation of residual tensile strength: Harmless and stable cracks in finite-sized structure made of ductile metals. Theoretical and Applied Fracture Mechanics, 2020, 109, 102734.	2.1	4

#	Article	IF	CITATIONS
127	Distinct fatigue limit of a 6XXX series aluminum alloy in relation to crack tip strain-aging. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 785, 139378.	2.6	4
128	Hydrogen-assisted Crack Propagation in Pre-strained Twinning-induced Plasticity Steel: from Initiation at a Small Defect to Failure. ISIJ International, 2021, 61, 1278-1286.	0.6	4
129	Fatigue characteristics of a notched specimen made of commercially-pure titanium. Theoretical and Applied Fracture Mechanics, 2020, 109, 102764.	2.1	4
130	Examination of linear notch mechanics by means of FEM Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1985, 51, 1717-1725.	0.2	3
131	Fatigue Strength of Spheroidal Graphite Cast Iron in Cylindrical Notched Bar Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1992, 58, 2280-2286.	0.2	3
132	Investigation of Local Hydrogen Distribution Around Fatigue Crack Tip on a Type 304 Stainless Steel with Secondary Ion Mass Spectrometry and the Hydrogen Micro-print Technique. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2007, 73, 788-795.	0.2	3
133	Fatigue Strength Characteristics of Non-Combustible Mg Alloy (2nd Report, Effect of Mean Stress on) Tj ETQq1 Mechanical Engineers, Part A, 2008, 74, 115-121.	1 0.784314 0.2	ł rgBT /Overl 3
134	Fatigue Strength Characteristics of Non-Combustible Mg Alloy. Journal of Solid Mechanics and Materials Engineering, 2008, 2, 763-770.	0.5	3
135	Prediction of fatigue limit reliability of high strength steel with deep notch under mean stress Ïf m = 0. International Journal of Fracture, 2011, 168, 73-91.	1.1	3
136	Initiation and Propagation Behaviors of Fatigue Cracks in 5056 Aluminum Alloy Studied by Rotating-Bending Tests with Smooth Specimen. Journal of Solid Mechanics and Materials Engineering, 2012, 6, 361-373.	0.5	3
137	Simple calculation method for stress concentration and stress intensity of T-shaped member. International Journal of Mechanical Sciences, 2013, 75, 8-15.	3.6	3
138	Effect of Si on temperature dependence of non-propagation limit of small fatigue crack in a Fe-C alloy. Procedia Structural Integrity, 2018, 13, 1032-1036.	0.3	3
139	Proposal of fractographic analysis method coupled with EBSD and ECCI. Procedia Structural Integrity, 2018, 13, 1076-1081.	0.3	3
140	Fatigue Behavior in an Fe–N Binary Ferritic Steel: Similarity and Difference between Carbon and Nitrogen. ISIJ International, 2019, 59, 186-191.	0.6	3
141	Influence of Stress Re-distribution on Hydrogen-induced Fatigue Crack Propagation. ISIJ International, 2019, 59, 1683-1690.	0.6	3
142	Intrinsic Factors That Trigger the Coaxing Effect in Binary Fe-C Ferritic Alloys with a Focus on Strain Aging. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2017, 103, 660-666.	0.1	3
143	Digital-image-correlation observation of cyclic plastic strain field during the damage-accumulation mode of fatigue crack propagation under pure cyclic mode II loading for cold-rolled SUS430 steel. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 845, 143246.	2.6	3
144	Analysis for tensile strength of multi-phase alloy composed of ductile matrix and brittle reinforcement with circumferential notch in As-cast AZX912 Mg alloy. Theoretical and Applied Fracture Mechanics, 2022, 121, 103465.	2.1	3

#	Article	IF	CITATIONS
145	Influence of Testing Frequency on Fatigue Crack Growth of 6061-T6 Aluminum Alloy in Hydrogen Gas Environment. Key Engineering Materials, 2007, 353-358, 174-177.	0.4	2
146	Effects of Mechanical and Environmental Factors on the Notch Tensile Strength of 1,300MPa Class SCM435 High-Strength Steel in Hydrogen Gas. Journal of Solid Mechanics and Materials Engineering, 2012, 6, 191-200.	0.5	2
147	Proposed fatigue damage measurement parameter for shot-peened carbon steel based on fatigue crack growth behavior. International Journal of Fatigue, 2015, 74, 97-106.	2.8	2
148	Fatigue characteristics of flame-retardant magnesium alloy. Keikinzoku/Journal of Japan Institute of Light Metals, 2016, 66, 221-225.	0.1	2
149	Measurement of local mechanical properties using multiple indentations by a special conical indenter and error analysis. Journal of Materials Research, 2016, 31, 259-273.	1.2	2
150	Investigation on Mode I Propagation Behavior of Fatigue Crack in Precipitation-Hardened Aluminum Alloy with Different Mg Content. Materials Science Forum, 0, 889, 143-147.	0.3	2
151	Effects of the shape of small flaws and damage due to a focused ion beam on the fatigue strength characteristics of annealed mediumâ€ʿcarbon steel. Engineering Failure Analysis, 2018, 87, 49-68.	1.8	2
152	Dependence of fatigue limit on step height for stepped 0.45% carbon steel with singular stress field. Engineering Fracture Mechanics, 2018, 188, 20-35.	2.0	2
153	Quantification method for parameters affecting multi-scale roughness-induced fatigue crack closure. Procedia Structural Integrity, 2018, 13, 1071-1075.	0.3	2
154	Analysis of fatigue crack configuration influence on fatigue life. Procedia Structural Integrity, 2018, 13, 1148-1153.	0.3	2
155	Roles of Hydrogen and Plastic Strain Distribution on Delayed Crack Growth in Single-crystalline Fe–Si alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 803, 140703.	2.6	2
156	Effect of Prestrain on Fatigue Crack Growth of Age-Hardened Al 6061-T6. Journal of ASTM International, 2008, 5, 101549.	0.2	2
157	Fatigue Behavior in an Fe-N Binary Ferritic Steel: Similarity and Difference between Carbon and Nitrogen. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2020, 106, 413-419.	0.1	2
158	Influence of dynamic-strain aging due to excess Mg on fatigue crack growth rate scatter in Al6061-T6 alloy. Theoretical and Applied Fracture Mechanics, 2020, 108, 102617.	2.1	2
159	Reliability Problem Prevention Method of Stimulating Creativity and Visualizing Problems (2nd Report,) Tj ETQq1 Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 2005, 71, 2020-2027.	1 0.78431 0.2	4 rgBT /Ove 1
160	Quantitative prediction for acceptance limit value to society for the service quality of an independent system. Simulation Modelling Practice and Theory, 2007, 15, 1103-1119.	2.2	1
161	Quantitative Evaluation of Heat Crack Initiation Condition Under Thermal Shock. Journal of Solid Mechanics and Materials Engineering, 2008, 2, 128-136.	0.5	1
162	Effects of Hydrogen Gas Environment on Fatigue Strength at 107 cycles in Plain Specimen of Type 316L Stainless Steel. Journal of Solid Mechanics and Materials Engineering, 2009, 3, 72-83.	0.5	1

#	Article	IF	CITATIONS
163	Proposal of Strength Evaluation Method in Casting Material with Defect : Using Si-Added Noncombustible Mg Alloy(<special issue="">Solid Mechanics Indispensable for Automobile Engineering). Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2009, 75, 1326-1333.</special>	0.2	1
164	Strength Evaluation of Alumina's Spray Coating : 2nd Report, Proposal for Judgments of Crack Interference and Correction Methods of Crack Shape(<special issue="">Thermal and Mechanical) Tj ETQq0 0 0</special>	rgBT /Ove	erlock 10 Tf 5
	Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2009, 75, 845-854.		
165	Low Pressure Hydrogen Gas Effect on Extremely Low Fatigue Crack Growth from Small Blind Holes of SUS304 and SUS316L. Journal of Solid Mechanics and Materials Engineering, 2011, 5, 279-293.	0.5	1
166	Proposed Strength Evaluation Method for Casting Material with Defects (Using Non-combustible Mg) Tj ETQq0 0	0 rgBT /O	verlock 10 T
167	Strength Evaluation of Alumina Spray Coating (2nd Report, Proposal for Judgment of Crack) Tj ETQq1 1 0.784314 Engineering, 2011, 5, 191-208.	4 rgBT /Ον 0.5	verlock 10 Tf 1
168	Strength Evaluation of Alumina Spray Coating (4th Report, Consideration of Spray Structure) Tj ETQq0 0 0 rgBT / 294-310.	Overlock 0.5	10 Tf 50 547 1
169	Proposed Simple Determination Method for Welding Condition of Joint from Fatigue Limit Characteristics (1st Report: Application to TIG-Butt-Joint of Non-combustible Mg Alloy). Journal of Solid Mechanics and Materials Engineering, 2011, 5, 409-424.	0.5	1
170	Analysis of Small Fatigue Crack in Al-Mg-Si Aluminum Alloy. Materials Science Forum, 0, 794-796, 313-318.	0.3	1
171	Notch Sensitivity in Fatigue Limit of High Strength Steel. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2015, 101, 552-558.	0.1	1
172	Effect of internal hydrogen on very high cycle fatigue of precipitation-strengthened steel SUH660. International Journal of Fatigue, 2015, 70, 406-416.	2.8	1
173	Identification method of fracture mode based on measurement of microscopic plastic deformation in a Mg cast alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 642, 113-116.	2.6	1
174	Fatigue Behavior of Fe-Cr-Ni-based Metastable Austenitic Steels with an Identical Tensile Strength and Different Solute Carbon Contents. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2018, 104, 88-97.	0.1	1
175	Proposal and verification of novel fatigue crack propagation simulation method by finite element method Procedia Structural Integrity, 2018, 13, 1154-1158.	0.3	1
176	Effect analysis of stress-intensity-factor-range decreasing rate for obtaining threshold stress-intensity-factor-range. Theoretical and Applied Fracture Mechanics, 2019, 104, 102377.	2.1	1
177	Distinguishing geometric and metallurgic hydrogen-embrittlement susceptibilities in pre-cracked structures made of interstitial-free steel under monotonic tension. Theoretical and Applied Fracture Mechanics, 2020, 108, 102574.	2.1	1
178	Three-dimensional characterization of low-cycle fatigue crack morphology in TRIP-maraging steel: Crack closure, geometrical uncertainty and wear. International Journal of Fatigue, 2021, 143, 106032.	2.8	1
179	Microscopic examination of striation spacing during ductile crack growth in Fe-3wt%Si single-crystalline thin plates in air and hydrogen. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 802, 140652.	2.6	1
180	Suppression Mechanism of Strain-age Hardening in Carbon Steel Associated with Hydrogen Uptake. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2015, 101, 546-551.	0.1	1

#	Article	IF	CITATIONS
181	An Investigation of Hydrogen Environment Effect on the Strain Aging of Low-Carbon Steel through Vickers Hardness Test. Journal of Testing and Evaluation, 2013, 41, 20120190.	0.4	1
182	Torsional Fatigue Process in Short Carbon-Fiber Reinforced Polyamid 6.6. Comparison with Fatigue Process of Rotating Bending Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1992, 58, 1555-1560.	0.2	0
183	Fatigue Characteristics of Plain and Notched Specimens of SiC-Whisker-reinforced Aluminum Alloy in Comparison with Aluminum Alloy Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1992, 58, 1765-1771.	0.2	О
184	A Study on Managing Cycle of Measures for Incident Based on Visualizing Problems. , 2005, , 33.		0
185	Microscopic Deformation Behavior Observation of Lamellar Pearlite during Plastic Deformation. Journal of Solid Mechanics and Materials Engineering, 2008, 2, 137-144.	0.5	Ο
186	Effect of Gaseous Hydrogen on Cyclic Slip Behavior Around a Fatigue Crack Tip in Fe-3.2wt.%Si Single-Crystalline Alloy. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2009, 75, 1082-1089.	0.2	0
187	Strength Evaluation of Alumina's Spray Coating : 5th Report, Consideration of the Strength in Sprayed Structure for Thermal Stress. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2009, 75, 1177-1186.	0.2	Ο
188	Low Pressure Hydrogen Gas Effect on Extremely Low Fatigue Crack Growth from Small Blind Holes of SUS304 and SUS316L(<special issue="">Solid Mechanics Indispensable for Automobile Engineering). Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2009, 75, 1309-1318</special>	0.2	0
189	Strength Evaluation of Alumina's Spray Coating : 3rd Report, Proposal for the Safety Design of Fracture Strength with Consideration of Cracks Interference(<special issue="">Thermal and) Tj ETQq1 1 0.784</special>	4314 rgB ⁻ 0.2	[/Oyerlock 10
190	Evaluation of Notch Tensile Strength for High Strength Steel with Inclusions : In Case of Casting High Speed Steel. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2009, 75, 1764-1770.	0.2	0
191	Proposal of Simple Determination Method for Welding Condition of Joint from Fatigue Limit Characteristics : 1st Report, Application to TIG-Butt-Joint of Non-Combustible Mg Alloy. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2010, 76, 1626-1635	0.2	Ο
192	Microscopic Observation of the Mechanism for Brittle Striation Formation in Low Carbon Steel Fatigued in Hydrogen Gas : TEM and EBSD Observations Corresponding to Fractography. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2010, 76, 1335-1342.	0.2	0
193	Evaluation of Estimation Method for Thermal Fatigue Crack Growth Rate in Epoxy Resin Composites. Journal of Solid Mechanics and Materials Engineering, 2011, 5, 546-557.	0.5	Ο
194	Strength Evaluation of Alumina Spray Coating (5th Report, Consideration of the Strength in Sprayed) Tj ETQq0 (425-444.) 0 rgBT 0.5	Overlock 10 Tf 0
195	Small Fatigue Crack Growth Behavior from Artificial Notch with Focused Ion Beam in Annealed 0.45% Carbon Steel. Key Engineering Materials, 0, 488-489, 319-322.	0.4	Ο
196	Loading Frequency Effects on the Fatigue Crack Growth Rate and Fracture Surface Morphology of Low Carbon Steel in Case of Long-Term Use in Hydrogen Gas. Key Engineering Materials, 0, 488-489, 323-326.	0.4	0
197	Effect of Friction Stir Welding Condition on Fatigue Limit of Welded Non-Combustible Mg Alloy. Key Engineering Materials, 0, 488-489, 311-314.	0.4	0
198	Micro-Analyses of Small Cracks in 6061-T6 Aluminium Alloy Subjected to High-Cycle Fatigue. Key Engineering Materials, 2012, 525-526, 213-216.	0.4	0

#	Article	IF	CITATIONS
199	Evaluation of Notch Tensile Strength for High Strength Steel with Inclusions. Journal of Solid Mechanics and Materials Engineering, 2012, 6, 121-130.	0.5	0
200	Giga-Cycle Property of a New Age-Hardened Aluminium Alloy Containing Excess Solute Magnesium. Key Engineering Materials, 0, 577-578, 293-296.	0.4	0
201	Characteristic Fatigue Crack Growth Behavior of Low Carbon Steel Under Low-pressure Hydrogen Gas Atmosphere in an Ultra-low Frequency. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2015, 101, 605-610.	0.1	0
202	Emergence of distinct fatigue limit: impact of excess solute magnesium in 6061-T6 alloy. Procedia Structural Integrity, 2018, 13, 1010-1013.	0.3	0
203	Influence of Stress Re-distribution on Hydrogen-induced Fatigue Crack Propagation. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2018, 104, 46-53.	0.1	0
204	Fatigue Crack Propagation Resistance in Metastable Laminated Microstructures. Materia Japan, 2019, 58, 206-213.	0.1	0
205	Harmless Preexisting Crack in Structures Made of Hydrogen-Embrittlement Sensitive Materials under Monotonic Tension. IOP Conference Series: Materials Science and Engineering, 2020, 774, 012098.	0.3	0
206	Fatigue Limit Reliability Analysis for Notched Material with Some Kinds of Dense Inhomogeneities Using Fracture Mechanics. , 2020, , .		0
207	Annealing Time Effects on Mechanically Long Fatigue Crack Growth of TRIP-maraging Steels. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2021, 107, 321-324.	0.1	0
208	Fatigue crack propagation study of precipitation hardened steels. Materials Today: Proceedings, 2021, 46, 4470-4474.	0.9	0
209	OS4-5-5 Fatigue Strength Characteristics of Non-combustible Mg Alloy. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics, 2007, 2007.6, _OS4-5-5-1OS4-5-5-4.	0.0	0
210	Prediction of the Fatigue Limit of Prestrained Carbon Steel Under Tensile Mean Stress. Journal of ASTM International, 2008, 5, 1-13.	0.2	0
211	Effects of Gaseous Hydrogen on Fatigue Crack Growth Behavior of Low Carbon Steel. , 2009, , .		0
212	Relationship between hardness and fatigue limit focusing attention on the plastic strain similarity between indentation and fatigue crack growth. The Proceedings of Mechanical Engineering Congress Japan, 2016, 2016, G0300305.	0.0	0
213	Non-propagation limit analysis of fatigue crack with Dugdale model. The Proceedings of Mechanical Engineering Congress Japan, 2016, 2016, C0400306.	0.0	0
214	Punching process effects on fatigue strength properties. The Proceedings of the Materials and Mechanics Conference, 2016, 2016, GS-05.	0.0	0
215	Revisiting the mechanism why fatigue limit of high strength steel does not increase according to its hardness. The Proceedings of Conference of Kyushu Branch, 2018, 2018.71, C35.	0.0	0
216	Improvement of fatigue limit prediction by hardness based on plasticity zone similarity between fatigue crack and indentation. The Proceedings of Conference of Kyushu Branch, 2018, 2018.71, C34.	0.0	0

#	Article	IF	CITATIONS
217	Notch sensitivity in pure nickel determined by two mechanisms of hydrogen-assisted crack propagation: sub-/main-crack coalescence versus main-crack growth. The Proceedings of the Materials and Mechanics Conference, 2019, 2019, OS0110.	0.0	0
218	Characteristics of plastic deformation associated with hydrogen-induced delayed crack propagation in a sheet of single-crystal Fe-Si alloy. The Proceedings of the Materials and Mechanics Conference, 2019, 2019, OS0111.	0.0	0
219	Annealing Time Effects on Mechanically Long Fatigue Crack Growth of TRIP-maraging Steels. ISIJ International, 2022, 62, 399-401.	0.6	0
220	Early crack initiation mode during tensile fracture process in a punch-processed precipitation-hardened steel plates and evaluation method to treat the crack as an equivalent pre-crack. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 850, 143534.	2.6	0