Koji Nobe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6911852/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Distinct Pathways of Ca ²⁺ Sensitization in Porcine Coronary Artery. Circulation Research, 2001, 88, 1283-1290.	4.5	92
2	Rho kinase mediates serum-induced contraction in fibroblast fibers independent of myosin LC20 phosphorylation. American Journal of Physiology - Cell Physiology, 2003, 284, C599-C606.	4.6	47
3	A novel finding of a low-molecular-weight compound, SMTP-7, having thrombolytic and anti-inflammatory effects in cerebral infarction of mice. Naunyn-Schmiedeberg's Archives of Pharmacology, 2010, 382, 245-253.	3.0	43
4	A Novel Embolic Model of Cerebral Infarction and Evaluation of Stachybotrys microspora Triprenyl Phenol-7 (SMTP-7), a Novel Fungal Triprenyl Phenol Metabolite. Journal of Pharmacological Sciences, 2010, 114, 41-49.	2.5	39
5	Phospholamban regulation of bladder contractility: evidence from geneâ€altered mouse models. Journal of Physiology, 2001, 535, 867-878.	2.9	32
6	Neuroprotective mechanisms of SMTP-7 in cerebral infarction model in mice. Naunyn-Schmiedeberg's Archives of Pharmacology, 2011, 384, 103-108.	3.0	27
7	Thrombin-Induced Force Development in Vascular Endothelial Cells: Contribution to Alteration of Permeability Mediated by Calcium-Dependent and -Independent Pathways. Journal of Pharmacological Sciences, 2005, 99, 252-263.	2.5	26
8	Glucose-Dependent Enhancement of Diabetic Bladder Contraction Is Associated with a Rho Kinase-Regulated Protein Kinase C Pathway. Journal of Pharmacology and Experimental Therapeutics, 2009, 328, 940-950.	2.5	23
9	Thrombolytic Therapy for Acute Ischemic Stroke: Past and Future. Current Pharmaceutical Design, 2019, 25, 242-250.	1.9	22
10	Fibroblast fiber contraction: role of C and Rho kinase in activation by thromboxane A2. American Journal of Physiology - Cell Physiology, 2003, 285, C1411-C1419.	4.6	20
11	Alternations of Diacylglycerol Kinase in Streptozotocin-Induced Diabetic Rats. Cellular Signalling, 1998, 10, 465-471.	3.6	19
12	Hyper-reactivity of diacylglycerol kinase is involved in the dysfunction of aortic smooth muscle contractility in streptozotocin-induced diabetic rats. British Journal of Pharmacology, 2002, 136, 441-451.	5.4	18
13	Novel diacylglycerol kinase inhibitor selectively suppressed an U46619-induced enhancement of mouse portal vein contraction under high glucose conditions. British Journal of Pharmacology, 2004, 143, 166-178.	5.4	18
14	Evaluation of the effects of a new series of SMTPs in the acetic acid-induced embolic cerebral infarct mouse model. European Journal of Pharmacology, 2018, 818, 221-227.	3.5	17
15	High-Glucose-Altered Endothelial Cell Function Involves Both Disruption of Cell-to-Cell Connection and Enhancement of Force Development. Journal of Pharmacology and Experimental Therapeutics, 2006, 318, 530-539.	2.5	16
16	Alterations of Glucose-Dependent and -Independent Bladder Smooth Muscle Contraction in Spontaneously Hypertensive and Hyperlipidemic Rat. Journal of Pharmacology and Experimental Therapeutics, 2008, 324, 631-642.	2.5	16
17	Protein kinase C is involved in translocation of diacylglycerol kinase induced by carbachol in guinea pig taenia coli. Biochemical Pharmacology, 1995, 50, 591-599.	4.4	15
18	Effects of microtubules and microfilaments on [Ca2+]i and contractility in a reconstituted fibroblast fibro. American Journal of Physiology - Cell Physiology, 2000, 279, C785-C796.	4.6	15

#	Article	IF	CITATIONS
19	Activation of diacylglycerol kinase by carbachol in guinea pig taenia coli. Biochemical Pharmacology, 1994, 48, 2005-2014.	4.4	14
20	Two distinct dysfunctions in diabetic mouse mesenteric artery contraction are caused by changes in the Rho A–Rho kinase signaling pathway. European Journal of Pharmacology, 2012, 683, 217-225.	3.5	14
21	Subcellular distribution of protein kinase C isoforms in gastric antrum smooth muscle of STZ-induced diabetic rats. Life Sciences, 1999, 64, 1933-1940.	4.3	12
22	Preferential role of intracellular Ca 2+ stores in regulation of isometric force in NIH 3T3 fibroblast fibres. Journal of Physiology, 2000, 529, 669-679.	2.9	12
23	High-Glucose Enhances a Thromboxane A2-Induced Aortic Contraction Mediated by an Alteration of Phosphatidylinositol Turnover. Journal of Pharmacological Sciences, 2003, 92, 267-282.	2.5	11
24	SMTPâ€44D improves diabetic neuropathy symptoms in mice through its antioxidant and antiâ€inflammatory activities. Pharmacology Research and Perspectives, 2020, 8, e00648.	2.4	11
25	Receptor-mediated diacylglycerol kinase translocation dependent on both transient increase in the intracellular calcium concentration and modification by protein kinase C. Biochemical Pharmacology, 1997, 53, 1683-1694.	4.4	10
26	Enhancement Effect under High-Glucose Conditions on U46619-Induced Spontaneous Phasic Contraction in Mouse Portal Vein. Journal of Pharmacology and Experimental Therapeutics, 2003, 304, 1129-1142.	2.5	9
27	Glucose-Dependent Enhancement of Spontaneous Phasic Contraction Is Suppressed in Diabetic Mouse Portal Vein: Association with Diacylglycerol-Protein Kinase C Pathway. Journal of Pharmacology and Experimental Therapeutics, 2004, 309, 1263-1272.	2.5	9
28	Adiponectin Enhances Calcium Dependency of Mouse Bladder Contraction Mediated by Protein Kinase C <i>α</i> Expression. Journal of Pharmacology and Experimental Therapeutics, 2013, 345, 62-68.	2.5	8
29	Potent efficacy of Stachybotrys microspora triprenyl phenol-7, a small molecule having anti-inflammatory and antioxidant activities, in a mouse model of acute kidney injury. European Journal of Pharmacology, 2021, 910, 174496.	3.5	8
30	Dysfunction of aorta involves different patterns of intracellular signaling pathways in diabetic rats. European Journal of Pharmacology, 2003, 471, 195-204.	3.5	7
31	Two Types of Overcontraction Are Involved in Intrarenal Artery Dysfunction in Type II Diabetic Mouse. Journal of Pharmacology and Experimental Therapeutics, 2014, 351, 77-86.	2.5	7
32	Eicosapentaenoic acid ethyl ester improves endothelial dysfunction in type 2 diabetic mice. Lipids in Health and Disease, 2018, 17, 118.	3.0	7
33	Distinct Agonist Responsibilities of the First and Second Branches of Mouse Mesenteric Artery. Journal of Cardiovascular Pharmacology, 2006, 47, 422-427.	1.9	5
34	A Traditional Herbal Medicine, Rikkunshi-To (TJ-43), Prevents Intracellular Signaling Disorders in Gastric Smooth Muscle of Diabetic Rats. The American Journal of Chinese Medicine, 2004, 32, 245-256.	3.8	4
35	Rho A and the Rho kinase pathway regulate fibroblast contraction: Enhanced contraction in constitutively active Rho A fibroblast cells. Biochemical and Biophysical Research Communications, 2010, 399, 292-299.	2.1	4
36	Chronic Treatment with α-Lipoic Acid Improves Endothelium-Dependent Vasorelaxation of Aortas in High-Fat Diet-Fed Mice. Biological and Pharmaceutical Bulletin, 2019, 42, 1456-1463.	1.4	4

#	Article	IF	CITATIONS
37	SMTP-44D Exerts Antioxidant and Anti-Inflammatory Effects through Its Soluble Epoxide Hydrolase Inhibitory Action in Immortalized Mouse Schwann Cells upon High Glucose Treatment. International Journal of Molecular Sciences, 2022, 23, 5187.	4.1	4
38	Effects of Kampo medicine, keishi-ka shakuyaku-to (TJ-60) on alteration of diacylglycerol metabolism in gastrointestinal smooth muscle of diabetic rats. Acta Pharmacologica Sinica, 2002, 23, 1173-80.	6.1	3
39	Acetic acid treatment causes renal inflammation and chronic kidney disease in mice. Journal of Pharmacological Sciences, 2021, 146, 160-168.	2.5	2
40	Effects of dietary palmitoleic acid on vascular function in aorta of diabetic mice. BMC Endocrine Disorders, 2022, 22, 103.	2.2	2
41	Evaluation of in vitro transdermal permeation, mass spectrometric imaging, and in vivo analgesic effects of pregabalin using a pluronic lecithin organogel formulation in mice. Pharmacology Research and Perspectives, 2022, 10, e00919.	2.4	1
42	PMCA, SERCA and Na, K ATPase Alpha Isoforms and Ca ²⁺ Homeostasis in Smooth Muscle Evidence from Gene-Altered Mice. Journal of Smooth Muscle Research Japanese Section, 2003, 7, J1-J35.	0.1	0
43	Change in Calcium and Contractile Responses of Middle Cerebral Artery from Strokeâ€prone Spontaneously Hypertensive Rats. FASEB Journal, 2009, 23, 781.14.	0.5	0
44	Insulinâ€induced hypertension in streptozotocinâ€induced diabetic mice involves α 1D â€adrenaline receptorâ€mediated overâ€contraction of the aorta and interlobar arteries. FASEB Journal, 2012, 26, 686.10.	0.5	0
45	Effects of fish oil ingestion on haemorheological examinations in the low oxygen training. Journal of Lipid Nutrition, 2020, 29, 127.	0.1	0
46	Potent efficacy of <i>Stachybotrys microspora</i> triprenyl phenol-7, a small molecule having anti-inflammatory and antioxidant activities, in a mouse model of acute kidney injury. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2022, 95, 2-O-072.	0.0	0