Marie Dacke

List of Publications by Year in descending order

Source: https:|/exaly.com/author-pdf/691185/publications.pdf
Version: 2024-02-01

| 53 | |
| :---: | :---: | :---: | :---: | :---: |
| papers | |
| 58 | 2,254 |
| citations | |
| all docs | |

1 Insect orientation to polarized moonlight. Nature, 2003, 424, 33-33. 27.8 252
2 Dung Beetles Use the Milky Way for Orientation. Current Biology, 2013, 23, 298-300. 3.9 178
3 Neural coding underlying the cue preference for celestial orientation. Proceedings of the National 7.1
Academy of Sciences of the United States of America, 2015, 112, 11395-11400. 166Twilight orientation to polarised light in the crepuscular dung beetleScarabaeus zambesianus.1.7Journal of Experimental Biology, 2003, 206, 1535-1543.
5 Lunar orientation in a beetle. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 361-365. 2.6 102
6 Visual cues used by ball-rolling dung beetles for orientation. Journal of Comparative Physiology A: 1.6 75
$7 \quad$ A Snapshot-Based Mechanism for Celestial Orientation. Current Biology, 2016, 26, 1456-1462. 3.9 72
8 Fecal-Derived Phenol Induces Egg-Laying Aversion in Drosophila. Current Biology, 2016, 26, 2762-2769.3.968
9 Anatomical organization of the brain of a diurnal and a nocturnal dung beetle. Journal of Comparative Neurology, 2017, 525, 1879-1908. 1.6 63
10 Diurnal dung beetles use the intensity gradient and the polarization pattern of the sky for orientation. Journal of Experimental Biology, 2014, 217, 2422-9. 61
11 Visual Navigation in Nocturnal Insects. Physiology, 2016, 31, 182-192. 3.1 60
12 Multimodal cue integration in the dung beetle compass. Proceedings of the National Academy ofSciences of the United States of America, 2019, 116, 14248-14253.7.157
Minimum viewing angle for visually guided ground speed control in bumblebees. Journal of 1.7 54
Experimental Biology, 2010, 213, 1625-1632.Effect of light intensity on flight control and temporal properties of photoreceptors in bumblebees.1.747
Journal of Experimental Biology, 2015, 218, 1339-46. 14
Neuroarchitecture of the dung beetle central complex. Journal of Comparative Neurology, 2018, 526, 15 2612-2630. $1.6 \quad 47$Bumblebees measure optic flow for position and speed control flexibly within the frontal visual1.744field. Journal of Experimental Biology, 2015, 218, 1051-1059.
17 The Dung Beetle Dance: An Orientation Behaviour?. PLoS ONE, 2012, 7, e30211. 2.5 42

19 How animals follow the stars. Proceedings of the Royal Society B: Biological Sciences, 2018, 285,
20172322 .
20172322.

The role of optic flow pooling in insect flight control in cluttered environments. Scientific Reports, | | |
| :--- | :--- |
| 23 | The role of optic |
| $2019,9,7707$. | |

3.3 37
Finding the gap: a brightness-based strategy for guidance in cluttered environments. Proceedings of 2.6 36 the Royal Society B: Biological Sciences, 2016, 283, 20152988.
Bumblebee flight performance in environments of different proximity. Journal of Comparative
Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2016, 202, 97-103. 25The final moments of landing in bumblebees, Bombus terrestris. Journal of Comparative Physiology A:Stellar performance: mechanisms underlying Milky Way orientation in dung beetles. Philosophical
Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160079.Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160079.
26Night sky orientation with diurnal and nocturnal eyes: dim-iig
moon is out of sight. Animal Behaviour, 2016, 111, 127-146.26
29 Night sky orientation with diurnal and nocturnal eyes: dim-light adaptations are critical when the2.025
31 How Dung Beetles Steer Straight. Annual Review of Entomology, 2021, 66, 243-256. 11.8 24
Bearing selection in ball-rolling dung beetles: is it constant?. Journal of Comparative Physiology A:1.623Neuroethology, Sensory, Neural, and Behavioral Physiology, 2010, 196, 801-806.$1.6 \quad 23$How bumblebees use lateral and ventral optic flow cues for position control in environments of33 different proximity. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, andBehavioral Physiology, 2017, 203, 343-351.Visual flight control in naturalistic and artificial environments. Journal of Comparative Physiology

A unified platform to manage, share, and archive morphological and functional data in insect
neuroscience. ELife, 2021, 10, .
$37 \quad$ A dung beetle that path integrates without the use of landmarks. Animal Cognition, 2020, 23, 1161-1175. 20

38 Differences in spatial resolution and contrast sensitivity of flight control in the honeybees <i>Apis

Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2017, 203, 999-1006.
40 Orienting to polarized light at nightâ€"matching lunar skylight to performance in a nocturnal beetle.

The effect of step size on straight-line orientation. Journal of the Royal Society Interface, 2019, 16,
20190181.
3.4

13

Bumblebees Perform Well-Controlled Landings in Dim Light. Frontiers in Behavioral Neuroscience, 2016, 10, 174.
2.0

45	The interplay of directional information provided by unpolarised and polarised light in the heading direction network of the diurnal dung beetle <i>Kheper lamarcki</i>. Journal of Experimental Biology, 2022, 225, .	1.7	8
46	Accelerated landing in a stingless bee and its unexpected benefits for traffic congestion. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192720.	2.6	7
47	Insect Orientation: The Drosophila Wind Compass Pathway. Current Biology, 2021, 31, R83-R85.	3.9	7
48	Cold-induced anesthesia impairs path integration memory in dung beetles. Current Biology, 2022, 32, 438-444.e3.	3.9	7
49	The role of spatial texture in visual control of bumblebee learning flights. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2018, 204, 737-745.	1.6	6

50 Accelerated landings in stingless bees are triggered by visual threshold cues. Biology Letters, 2020, 16, 20200437.
2.3

6

> Rules for the Leg Coordination of Dung Beetle Ball Rolling Behaviour. Scientific Reports, 2020, 10, 9278.

[^0]2.2

3

[^0]: Compass Cue Integration and Its Relation to the Visual Ecology of Three Tribes of Ball-Rolling Dung
 Beetles. Insects, 2021, 12, 526.

