Marie Dacke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/691185/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insect orientation to polarized moonlight. Nature, 2003, 424, 33-33.	27.8	252
2	Dung Beetles Use the Milky Way for Orientation. Current Biology, 2013, 23, 298-300.	3.9	178
3	Neural coding underlying the cue preference for celestial orientation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11395-11400.	7.1	166
4	Twilight orientation to polarised light in the crepuscular dung beetleScarabaeus zambesianus. Journal of Experimental Biology, 2003, 206, 1535-1543.	1.7	106
5	Lunar orientation in a beetle. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 361-365.	2.6	102
6	Visual cues used by ball-rolling dung beetles for orientation. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2003, 189, 411-418.	1.6	75
7	A Snapshot-Based Mechanism for Celestial Orientation. Current Biology, 2016, 26, 1456-1462.	3.9	72
8	Fecal-Derived Phenol Induces Egg-Laying Aversion in Drosophila. Current Biology, 2016, 26, 2762-2769.	3.9	68
9	Anatomical organization of the brain of a diurnal and a nocturnal dung beetle. Journal of Comparative Neurology, 2017, 525, 1879-1908.	1.6	63
10	Diurnal dung beetles use the intensity gradient and the polarization pattern of the sky for orientation. Journal of Experimental Biology, 2014, 217, 2422-9.	1.7	61
11	Visual Navigation in Nocturnal Insects. Physiology, 2016, 31, 182-192.	3.1	60
12	Multimodal cue integration in the dung beetle compass. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14248-14253.	7.1	57
13	Minimum viewing angle for visually guided ground speed control in bumblebees. Journal of Experimental Biology, 2010, 213, 1625-1632.	1.7	54
14	Effect of light intensity on flight control and temporal properties of photoreceptors in bumblebees. Journal of Experimental Biology, 2015, 218, 1339-46.	1.7	47
15	Neuroarchitecture of the dung beetle central complex. Journal of Comparative Neurology, 2018, 526, 2612-2630.	1.6	47
16	Bumblebees measure optic flow for position and speed control flexibly within the frontal visual field. Journal of Experimental Biology, 2015, 218, 1051-1059.	1.7	44
17	The Dung Beetle Dance: An Orientation Behaviour?. PLoS ONE, 2012, 7, e30211.	2.5	42
18	Spectral information as an orientation cue in dung beetles. Biology Letters, 2015, 11, 20150656.	2.3	40

MARIE DACKE

#	Article	IF	CITATIONS
19	How animals follow the stars. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172322.	2.6	39
20	The Dung Beetle Compass. Current Biology, 2018, 28, R993-R997.	3.9	39
21	Dung beetles ignore landmarks for straight-line orientation. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2013, 199, 17-23.	1.6	38
22	The brain behind straight-line orientation in dung beetles. Journal of Experimental Biology, 2019, 222, .	1.7	38
23	The role of optic flow pooling in insect flight control in cluttered environments. Scientific Reports, 2019, 9, 7707.	3.3	37
24	Finding the gap: a brightness-based strategy for guidance in cluttered environments. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152988.	2.6	36
25	Bumblebee flight performance in environments of different proximity. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2016, 202, 97-103.	1.6	34
26	The final moments of landing in bumblebees, Bombus terrestris. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2016, 202, 277-285.	1.6	33
27	Stellar performance: mechanisms underlying Milky Way orientation in dung beetles. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160079.	4.0	33
28	Light pollution forces a change in dung beetle orientation behavior. Current Biology, 2021, 31, 3935-3942.e3.	3.9	31
29	Night sky orientation with diurnal and nocturnal eyes: dim-light adaptations are critical when the moon is out of sight. Animal Behaviour, 2016, 111, 127-146.	1.9	26
30	Spatial Vision in Bombus terrestris. Frontiers in Behavioral Neuroscience, 2016, 10, 17.	2.0	25
31	How Dung Beetles Steer Straight. Annual Review of Entomology, 2021, 66, 243-256.	11.8	24
32	Bearing selection in ball-rolling dung beetles: is it constant?. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2010, 196, 801-806.	1.6	23
33	How bumblebees use lateral and ventral optic flow cues for position control in environments of different proximity. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2017, 203, 343-351.	1.6	23
34	Visual flight control in naturalistic and artificial environments. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2012, 198, 869-876.	1.6	21
35	A unified platform to manage, share, and archive morphological and functional data in insect neuroscience. ELife, 2021, 10, .	6.0	21
36	Control of self-motion in dynamic fluids: fish do it differently from bees. Biology Letters, 2014, 10, 20140279.	2.3	20

MARIE DACKE

#	Article	IF	CITATIONS
37	A dung beetle that path integrates without the use of landmarks. Animal Cognition, 2020, 23, 1161-1175.	1.8	20
38	Differences in spatial resolution and contrast sensitivity of flight control in the honeybees <i>Apis cerana</i> and <i>Apis mellifera</i> . Journal of Experimental Biology, 2018, 221, .	1.7	16
39	High contrast sensitivity for visually guided flight control in bumblebees. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2017, 203, 999-1006.	1.6	15
40	Orienting to polarized light at night—matching lunar skylight to performance in a nocturnal beetle. Journal of Experimental Biology, 2019, 222, .	1.7	15
41	The effect of step size on straight-line orientation. Journal of the Royal Society Interface, 2019, 16, 20190181.	3.4	13
42	Bumblebees Perform Well-Controlled Landings in Dim Light. Frontiers in Behavioral Neuroscience, 2016, 10, 174.	2.0	12
43	Straight-line orientation in the woodland-living beetle Sisyphus fasciculatus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2020, 206, 327-335.	1.6	10
44	Polarized Light Orientation in Ball-Rolling Dung Beetles. , 2014, , 27-39.		8
45	The interplay of directional information provided by unpolarised and polarised light in the heading direction network of the diurnal dung beetle <i>Kheper lamarcki</i> . Journal of Experimental Biology, 2022, 225, .	1.7	8
46	Accelerated landing in a stingless bee and its unexpected benefits for traffic congestion. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192720.	2.6	7
47	Insect Orientation: The Drosophila Wind Compass Pathway. Current Biology, 2021, 31, R83-R85.	3.9	7
48	Cold-induced anesthesia impairs path integration memory in dung beetles. Current Biology, 2022, 32, 438-444.e3.	3.9	7
49	The role of spatial texture in visual control of bumblebee learning flights. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2018, 204, 737-745.	1.6	6
50	Accelerated landings in stingless bees are triggered by visual threshold cues. Biology Letters, 2020, 16, 20200437.	2.3	6
51	Rules for the Leg Coordination of Dung Beetle Ball Rolling Behaviour. Scientific Reports, 2020, 10, 9278.	3.3	6
52	Dorsal landmark navigation in a Neotropical nocturnal bee. Current Biology, 2021, 31, 3601-3605.e3.	3.9	5
53	Compass Cue Integration and Its Relation to the Visual Ecology of Three Tribes of Ball-Rolling Dung Beetles. Insects, 2021, 12, 526.	2.2	3