Jian-Chun Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6911451/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TAZ is important for maintenance of the integrity of podocytes. American Journal of Physiology - Renal Physiology, 2022, 322, F419-F428.	2.7	10
2	Nuclear exclusion of YAP exacerbates podocyte apoptosis and disease progression in Adriamycin-induced focal segmental glomerulosclerosis. Laboratory Investigation, 2021, 101, 258-270.	3.7	14
3	YAP Activation in Renal Proximal Tubule Cells Drives Diabetic Renal Interstitial Fibrogenesis. Diabetes, 2020, 69, 2446-2457.	0.6	66
4	EGF Receptor–Dependent YAP Activation Is Important for Renal Recovery from AKI. Journal of the American Society of Nephrology: JASN, 2018, 29, 2372-2385.	6.1	78
5	Blocking rpS6 Phosphorylation Exacerbates Tsc1 Deletion–Induced Kidney Growth. Journal of the American Society of Nephrology: JASN, 2016, 27, 1145-1158.	6.1	10
6	Interaction of the EGF Receptor and the Hippo Pathway in the Diabetic Kidney. Journal of the American Society of Nephrology: JASN, 2016, 27, 1689-1700.	6.1	91
7	Overexpression of G-Protein-Coupled Receptor 40 Enhances the Mitogenic Response to Epoxyeicosatrienoic Acids. PLoS ONE, 2015, 10, e0113130.	2.5	19
8	Phosphorylation of ribosomal protein S6 mediates compensatory renal hypertrophy. Kidney International, 2015, 87, 543-556.	5.2	26
9	EGF Receptor Deletion in Podocytes Attenuates Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2015, 26, 1115-1125.	6.1	109
10	Survivin Mediates Renal Proximal Tubule Recovery from AKI. Journal of the American Society of Nephrology: JASN, 2013, 24, 2023-2033.	6.1	88
11	mVps34 Deletion in Podocytes Causes Glomerulosclerosis by Disrupting Intracellular Vesicle Trafficking. Journal of the American Society of Nephrology: JASN, 2013, 24, 198-207.	6.1	72
12	Renal Collecting Duct Cellâ€specific mVps34 Deletion Decreases Nephron Number and Increases Nephron Size. FASEB Journal, 2013, 27, 705.11.	0.5	0
13	EGFR Signaling Promotes TGFÎ2-Dependent Renal Fibrosis. Journal of the American Society of Nephrology: JASN, 2012, 23, 215-224.	6.1	228
14	Angiotensin II Induces Epithelial-to-Mesenchymal Transition in Renal Epithelial Cells through Reactive Oxygen Species/Src/Caveolin-Mediated Activation of an Epidermal Growth Factor Receptor–Extracellular Signal-Regulated Kinase Signaling Pathway. Molecular and Cellular Biology, 2012. 32. 981-991.	2.3	93
15	Deletion of the epidermal growth factor receptor in renal proximal tubule epithelial cells delays recovery from acute kidney injury. Kidney International, 2012, 82, 45-52.	5.2	109
16	Mitogenic Activity and Signaling Mechanism of 2-(14,15- Epoxyeicosatrienoyl)Glycerol, a Novel Cytochrome P450 Arachidonate Metabolite. Molecular and Cellular Biology, 2007, 27, 3023-3034.	2.3	27
17	Role of EGF Receptor Activation in Angiotensin II–Induced Renal Epithelial Cell Hypertrophy. Journal of the American Society of Nephrology: JASN, 2006, 17, 1615-1623.	6.1	58