Laura De Laporte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6911413/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Translating Therapeutic Microgels into Clinical Applications. Advanced Healthcare Materials, 2022, 11, e2101989.	7.6	26
2	Functionalized Microgel Rods Interlinked into Soft Macroporous Structures for 3D Cell Culture. Advanced Science, 2022, 9, e2103554.	11.2	29
3	Cells feel the beat – temporal effect of cyclic mechanical actuation on muscle cells. Applied Materials Today, 2022, 27, 101492.	4.3	9
4	Digitally Fabricated and Naturally Augmented In Vitro Tissues. Advanced Healthcare Materials, 2021, 10, e2001253.	7.6	2
5	Is the Microgel Collapse a Two-Step Process? Exploiting Cononsolvency to Probe the Collapse Dynamics of Poly- <i>N</i> -isopropylacrylamide (pNIPAM). Journal of Physical Chemistry B, 2021, 125, 1503-1512.	2.6	10
6	Bicyclic RGD peptides enhance nerve growth in synthetic PEG-based Anisogels. Biomaterials Science, 2021, 9, 4329-4342.	5.4	16
7	Controlling Structure with Injectable Biomaterials to Better Mimic Tissue Heterogeneity and Anisotropy. Advanced Healthcare Materials, 2021, 10, e2002221.	7.6	26
8	Anisometric Microstructures to Determine Minimal Critical Physical Cues Required for Neurite Alignment. Advanced Healthcare Materials, 2021, 10, e2100874.	7.6	7
9	Synergy of Advanced Experimental and Modeling Tools to Underpin the Synthesis of Static Step-Growth-Based Networks Involving Polymeric Precursor Building Blocks. Macromolecules, 2021, 54, 9280-9298.	4.8	18
10	Nanofibers and Nanostructured Scaffolds for Nervous System Lesions. Neuromethods, 2021, , 61-101.	0.3	2
11	Predicting the orientation of magnetic microgel rods for soft anisotropic biomimetic hydrogels. Polymer Chemistry, 2020, 11, 496-507.	3.9	29
12	Soft temperature-responsive microgels of complex shape in stop-flow lithography. Lab on A Chip, 2020, 20, 285-295.	6.0	34
13	How Much Physical Guidance is Needed to Orient Growing Axons in 3D Hydrogels?. Advanced Healthcare Materials, 2020, 9, e2000886.	7.6	14
14	Granular Cellulose Nanofibril Hydrogel Scaffolds for 3D Cell Cultivation. Macromolecular Rapid Communications, 2020, 41, 2000191.	3.9	15
15	Unravelling colloid filter cake motions in membrane cleaning procedures. Scientific Reports, 2020, 10, 20043.	3.3	9
16	Hierarchical fibrous guiding cues at different scales influence linear neurite extension. Acta Biomaterialia, 2020, 113, 350-359.	8.3	23
17	Cellulose Nanofibril Hydrogel Promotes Hepatic Differentiation of Human Liver Organoids. Advanced Healthcare Materials, 2020, 9, e1901658.	7.6	62
18	A Layer-by-Layer Single-Cell Coating Technique To Produce Injectable Beating Mini Heart Tissues via Microfluidics. Biomacromolecules, 2019, 20, 3746-3754.	5.4	42

LAURA DE LAPORTE

#	Article	IF	CITATIONS
19	Rapid and Robust Coating Method to Render Polydimethylsiloxane Surfaces Cell-Adhesive. ACS Applied Materials & Interfaces, 2019, 11, 41091-41099.	8.0	26
20	Synthetic 3D PEG-Anisogel Tailored with Fibronectin Fragments Induce Aligned Nerve Extension. Biomacromolecules, 2019, 20, 4075-4087.	5.4	38
21	Compartmentalized Jet Polymerization as a Highâ€Resolution Process to Continuously Produce Anisometric Microgel Rods with Adjustable Size and Stiffness. Advanced Materials, 2019, 31, e1903668.	21.0	40
22	Cellular responses to beating hydrogels to investigate mechanotransduction. Nature Communications, 2019, 10, 4027.	12.8	60
23	Solvent-Induced Nanotopographies of Single Microfibers Regulate Cell Mechanotransduction. ACS Applied Materials & Interfaces, 2019, 11, 7671-7685.	8.0	32
24	Metal–Organic Gels Based on a Bisamide Tetracarboxyl Ligand for Carbon Dioxide, Sulfur Dioxide, and Selective Dye Uptake. ACS Applied Materials & Interfaces, 2019, 11, 19654-19667.	8.0	32
25	Cell Encapsulation in Soft, Anisometric Poly(ethylene) Glycol Microgels Using a Novel Radicalâ€Free Microfluidic System. Small, 2019, 15, e1900692.	10.0	39
26	High-Throughput Production of Micrometer Sized Double Emulsions and Microgel Capsules in Parallelized 3D Printed Microfluidic Devices. Polymers, 2019, 11, 1887.	4.5	15
27	Nanofibrillar Cellulose as an Enzymatically and Flow Driven Degradable Scaffold for Three-Dimensional Tissue Engineering. Journal of Engineering and Science in Medical Diagnostics and Therapy, 2019, 2, .	0.5	3
28	A water-soluble PEGylated RGD-functionalized bisbithiophenyl diketopyrrolopyrrole as a photoacoustic sonophore. Photochemical and Photobiological Sciences, 2018, 17, 617-621.	2.9	4
29	Biofunctionalized aligned microgels provide 3D cell guidance to mimic complex tissue matrices. Biomaterials, 2018, 163, 128-141.	11.4	86
30	Hierarchical Design of Tissue Regenerative Constructs. Advanced Healthcare Materials, 2018, 7, e1701067.	7.6	68
31	Why the impact of mechanical stimuli on stem cells remains a challenge. Cellular and Molecular Life Sciences, 2018, 75, 3297-3312.	5.4	35
32	Strong Photoacoustic Signal Enhancement by Coating Gold Nanoparticles with Melanin for Biomedical Imaging. Advanced Functional Materials, 2018, 28, 1705607.	14.9	60
33	A catalyst-free, temperature controlled gelation system for in-mold fabrication of microgels. Chemical Communications, 2018, 54, 6943-6946.	4.1	28
34	High-Affinity RGD-Knottin Peptide as a New Tool for Rapid Evaluation of the Binding Strength of Unlabeled RGD-Peptides to α _v l² ₃ , α _v l² ₅ , and α ₅ l² ₁ Integrin Receptors. Analytical Chemistry, 2017, 89, 5991-5997.	6.5	16
35	Microfluidic fabrication of polyethylene glycol microgel capsules with tailored properties for the delivery of biomolecules. Biomaterials Science, 2017, 5, 1549-1557.	5.4	64
36	Nerve Cells Decide to Orient inside an Injectable Hydrogel with Minimal Structural Guidance. Nano Letters, 2017, 17, 3782-3791.	9.1	165

LAURA DE LAPORTE

#	Article	IF	CITATIONS
37	An Injectable Hybrid Hydrogel with Oriented Short Fibers Induces Unidirectional Growth of Functional Nerve Cells. Small, 2017, 13, 1702207.	10.0	147
38	Cellulose Nanofibril Hydrogel Tubes as Sacrificial Templates for Freestanding Tubular Cell Constructs. Biomacromolecules, 2016, 17, 905-913.	5.4	63
39	Water-soluble dopamine-based polymers for photoacoustic imaging. Chemical Communications, 2015, 51, 6084-6087.	4.1	51
40	Bioactive Gyroid Scaffolds Formed by Sacrificial Templating of Nanocellulose and Nanochitin Hydrogels as Instructive Platforms for Biomimetic Tissue Engineering. Advanced Materials, 2015, 27, 2989-2995.	21.0	195
41	Silk Hydrogels as Soft Substrates for Neural Tissue Engineering. Advanced Functional Materials, 2013, 23, 5140-5149.	14.9	157
42	Engineering the Regenerative Microenvironment with Biomaterials. Advanced Healthcare Materials, 2013, 2, 57-71.	7.6	329
43	Tenascin C Promiscuously Binds Growth Factors via Its Fifth Fibronectin Type III-Like Domain. PLoS ONE, 2013, 8, e62076.	2.5	108
44	Vascular endothelial growth factor and fibroblast growth factor 2 delivery from spinal cord bridges to enhance angiogenesis following injury. Journal of Biomedical Materials Research - Part A, 2011, 98A, 372-382.	4.0	40
45	Patterned transgene expression in multiple-channel bridges after spinal cord injury. Acta Biomaterialia, 2010, 6, 2889-2897.	8.3	37
46	Multiple Channel Bridges for Spinal Cord Injury: Cellular Characterization of Host Response. Tissue Engineering - Part A, 2009, 15, 3283-3295.	3.1	56
47	Plasmid Releasing Multiple Channel Bridges for Transgene Expression After Spinal Cord Injury. Molecular Therapy, 2009, 17, 318-326.	8.2	58
48	Local gene delivery from ECM-coated poly(lactide-co-glycolide) multiple channel bridges after spinal cord injury. Biomaterials, 2009, 30, 2361-2368.	11.4	91
49	Sustained transgene expression via citric acid-based polyester elastomers. Biomaterials, 2009, 30, 2632-2641.	11.4	60
50	Matrices and scaffolds for DNA delivery in tissue engineering. Advanced Drug Delivery Reviews, 2007, 59, 292-307.	13.7	241
51	Design of modular non-viral gene therapy vectors. Biomaterials, 2006, 27, 947-954.	11.4	193
52	Neurotrophin releasing single and multiple lumen nerve conduits. Journal of Controlled Release, 2005, 104, 433-446.	9.9	129