List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6911238/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review of bioactive plant polysaccharides: Biological activities, functionalization, and biomedical applications. Bioactive Carbohydrates and Dietary Fibre, 2015, 5, 31-61.	1.5	461
2	Preparation and characterization of antioxidant and pH-sensitive films based on chitosan and black soybean seed coat extract. Food Hydrocolloids, 2019, 89, 56-66.	5.6	352
3	Development of multifunctional food packaging films based on chitosan, TiO2 nanoparticles and anthocyanin-rich black plum peel extract. Food Hydrocolloids, 2019, 94, 80-92.	5.6	333
4	Development of antioxidant and intelligent pH-sensing packaging films by incorporating purple-fleshed sweet potato extract into chitosan matrix. Food Hydrocolloids, 2019, 90, 216-224.	5.6	283
5	Effect of protocatechuic acid incorporation on the physical, mechanical, structural and antioxidant properties of chitosan film. Food Hydrocolloids, 2017, 73, 90-100.	5.6	238
6	In vitro and in vivo antioxidant activity of ethanolic extract of white button mushroom (Agaricus) Tj ETQq0 0 0 rg	BT /Overlo	ock 10 Tf 50

7	Preparation and characterization of active and intelligent packaging films based on cassava starch and anthocyanins from Lycium ruthenicum Murr. International Journal of Biological Macromolecules, 2019, 134, 80-90.	3.6	225
8	Effects of anthocyanin-rich purple and black eggplant extracts on the physical, antioxidant and pH-sensitive properties of chitosan film. Food Hydrocolloids, 2019, 94, 93-104.	5.6	222
9	Preparation and characterization of antioxidant, antimicrobial and pH-sensitive films based on chitosan, silver nanoparticles and purple corn extract. Food Hydrocolloids, 2019, 96, 102-111.	5.6	220
10	Synthesis, characterization, bioactivity and potential application of phenolic acid grafted chitosan: A review. Carbohydrate Polymers, 2017, 174, 999-1017.	5.1	211
11	Development of active and intelligent packaging by incorporating betalains from red pitaya (Hylocereus polyrhizus) peel into starch/polyvinyl alcohol films. Food Hydrocolloids, 2020, 100, 105410.	5.6	202
12	Recent advances in the preparation, physical and functional properties, and applications of anthocyanins-based active and intelligent packaging films. Food Packaging and Shelf Life, 2020, 26, 100550.	3.3	193
13	Preparation of pH-sensitive and antioxidant packaging films based on κ-carrageenan and mulberry polyphenolic extract. International Journal of Biological Macromolecules, 2019, 134, 993-1001.	3.6	188
14	Production, characterization and antioxidant activities in vitro of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3. Carbohydrate Polymers, 2009, 78, 275-281.	5.1	178
15	Preparation and characterization of protocatechuic acid grafted chitosan films with antioxidant activity. Food Hydrocolloids, 2017, 63, 457-466.	5.6	171
16	The impacts of natural polysaccharides on intestinal microbiota and immune responses – a review. Food and Function, 2019, 10, 2290-2312.	2.1	157
17	Synthesis of chitosan-gallic acid conjugate: Structure characterization and in vitro anti-diabetic potential. International Journal of Biological Macromolecules, 2013, 62, 321-329.	3.6	156
18	In vitro and in vivo antioxidant activity of exopolysaccharides from endophytic bacterium	5.1	153

Paenibacillus polymyxa EJS-3. Carbohydrate Polymers, 2010, 82, 1278-1283.

#	Article	IF	CITATIONS
19	Preparation, characterization and antioxidant activity of phenolic acids grafted carboxymethyl chitosan. International Journal of Biological Macromolecules, 2013, 62, 85-93.	3.6	149
20	Effects of polysaccharides from purple sweet potatoes on immune response and gut microbiota composition in normal and cyclophosphamide treated mice. Food and Function, 2018, 9, 937-950.	2.1	143
21	Effect of grafting method on the physical property and antioxidant potential of chitosan film functionalized with gallic acid. Food Hydrocolloids, 2019, 89, 1-10.	5.6	136
22	Free radical mediated grafting of chitosan with caffeic and ferulic acids: Structures and antioxidant activity. International Journal of Biological Macromolecules, 2014, 65, 97-106.	3.6	134
23	Physical, mechanical and antioxidant properties of chitosan films grafted with different hydroxybenzoic acids. Food Hydrocolloids, 2017, 71, 176-186.	5.6	131
24	Structural characterization of water-soluble polysaccharide from Arctium lappa and its effects on colitis mice. Carbohydrate Polymers, 2019, 213, 89-99.	5.1	124
25	Preparation, antioxidant and antitumor activities in vitro of different derivatives of levan from endophytic bacterium Paenibacillus polymyxa EJS-3. Food and Chemical Toxicology, 2012, 50, 767-772.	1.8	123
26	Anti-inflammatory properties and gut microbiota modulation of an alkali-soluble polysaccharide from purple sweet potato in DSS-induced colitis mice. International Journal of Biological Macromolecules, 2020, 153, 708-722.	3.6	119
27	Effect of gallic acid grafted chitosan film packaging on the postharvest quality of white button mushroom (Agaricus bisporus). Postharvest Biology and Technology, 2019, 147, 39-47.	2.9	116
28	Development of active packaging based on chitosan-gelatin blend films functionalized with Chinese hawthorn (Crataegus pinnatifida) fruit extract. International Journal of Biological Macromolecules, 2019, 140, 384-392.	3.6	114
29	Protocatechuic acid grafted onto chitosan: Characterization and antioxidant activity. International Journal of Biological Macromolecules, 2016, 89, 518-526.	3.6	106
30	Comparison of the structural, physical and functional properties of κ-carrageenan films incorporated with pomegranate flesh and peel extracts. International Journal of Biological Macromolecules, 2020, 147, 1076-1088.	3.6	106
31	Active packaging films and edible coatings based on polyphenolâ€rich propolis extract: A review. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 2106-2145.	5.9	106
32	Preparation, characterization, physicochemical property and potential application of porous starch: A review. International Journal of Biological Macromolecules, 2020, 148, 1169-1181.	3.6	101
33	Preparation and characterization of antioxidant and antimicrobial packaging films based on chitosan and proanthocyanidins. International Journal of Biological Macromolecules, 2019, 134, 11-19.	3.6	100
34	Development of active and intelligent films based on cassava starch and Chinese bayberry (<i>Myrica) Tj ETQq0</i>	0 0 rgBT /	Overlock 10

35	Effects of different dietary polyphenols on conformational changes and functional properties of protein–polyphenol covalent complexes. Food Chemistry, 2021, 361, 130071.	4.2	99
36	Smart packaging films based on starch/polyvinyl alcohol and Lycium ruthenicum anthocyanins-loaded nano-complexes: Functionality, stability and application. Food Hydrocolloids, 2021, 119, 106850.	5.6	94

#	Article	IF	CITATIONS
37	Recent advances in endophytic exopolysaccharides: Production, structural characterization, physiological role and biological activity. Carbohydrate Polymers, 2017, 157, 1113-1124.	5.1	92
38	Recent advances in phenolic–protein conjugates: synthesis, characterization, biological activities and potential applications. RSC Advances, 2019, 9, 35825-35840.	1.7	90
39	Antioxidant and pH-sensitive films developed by incorporating purple and black rice extracts into chitosan matrix. International Journal of Biological Macromolecules, 2019, 137, 307-316.	3.6	89
40	Recent advances in flavonoid-grafted polysaccharides: Synthesis, structural characterization, bioactivities and potential applications. International Journal of Biological Macromolecules, 2018, 116, 1011-1025.	3.6	87
41	Synthesis, characterization and in vitro anti-diabetic activity of catechin grafted inulin. International Journal of Biological Macromolecules, 2014, 64, 76-83.	3.6	86
42	Development of antioxidant, antimicrobial and ammonia-sensitive films based on quaternary ammonium chitosan, polyvinyl alcohol and betalains-rich cactus pears (Opuntia ficus-indica) extract. Food Hydrocolloids, 2020, 106, 105896.	5.6	85
43	Extraction, characterization and in vitro antioxidant activity of polysaccharides from black soybean. International Journal of Biological Macromolecules, 2015, 72, 1182-1190.	3.6	78
44	Comparison of the physical and functional properties of starch/polyvinyl alcohol films containing anthocyanins and/or betacyanins. International Journal of Biological Macromolecules, 2020, 163, 898-909.	3.6	78
45	Development and characterization of antioxidant active packaging and intelligent Al3+-sensing films based on carboxymethyl chitosan and quercetin. International Journal of Biological Macromolecules, 2019, 126, 1074-1084.	3.6	76
46	Development of multifunctional food packaging by incorporating betalains from vegetable amaranth (Amaranthus tricolor L.) into quaternary ammonium chitosan/fish gelatin blend films. International Journal of Biological Macromolecules, 2020, 159, 675-684.	3.6	70
47	Comparison of the structural characterization and physicochemical properties of starches from seven purple sweet potato varieties cultivated in China. International Journal of Biological Macromolecules, 2018, 120, 1632-1638.	3.6	69
48	Preparation and characterization of active and intelligent films based on fish gelatin and haskap berries (Lonicera caerulea L.) extract. Food Packaging and Shelf Life, 2019, 22, 100417.	3.3	69
49	Immune-enhancing effects of polysaccharides from purple sweet potato. International Journal of Biological Macromolecules, 2019, 123, 923-930.	3.6	69
50	Development and comparison of different polysaccharide/PVA-based active/intelligent packaging films containing red pitaya betacyanins. Food Hydrocolloids, 2022, 124, 107305.	5.6	69
51	Medium optimization and structural characterization of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3. Carbohydrate Polymers, 2010, 79, 206-213.	5.1	68
52	Preparation, characterization, digestibility and antioxidant activity of quercetin grafted Cynanchum auriculatum starch. International Journal of Biological Macromolecules, 2018, 114, 130-136.	3.6	68
53	Isolation, structural characterization and bioactivities of naturally occurring polysaccharide–polyphenolic conjugates from medicinal plants—A reivew. International Journal of Biological Macromolecules, 2018, 107, 2242-2250.	3.6	68
54	Development of antioxidant and antimicrobial packaging films based on chitosan and mangosteen (Garcinia mangostana L.) rind powder. International Journal of Biological Macromolecules, 2020, 145, 1129-1139.	3.6	67

#	Article	IF	CITATIONS
55	Structural characterization and anti-inflammatory activity of alkali-soluble polysaccharides from purple sweet potato. International Journal of Biological Macromolecules, 2019, 131, 484-494.	3.6	66
56	Characterization, antioxidant activity and hepatoprotective effect of purple sweetpotato polysaccharides. International Journal of Biological Macromolecules, 2018, 115, 69-76.	3.6	65
57	A simple method for the simultaneous decoloration and deproteinization of crude levan extract from Paenibacillus polymyxa EJS-3 by macroporous resin. Bioresource Technology, 2010, 101, 6077-6083.	4.8	64
58	Reaction Mechanisms and Structural and Physicochemical Properties of Caffeic Acid Grafted Chitosan Synthesized in Ascorbic Acid and Hydroxyl Peroxide Redox System. Journal of Agricultural and Food Chemistry, 2018, 66, 279-289.	2.4	64
59	Structure, physical property and antioxidant activity of catechin grafted Tremella fuciformis polysaccharide. International Journal of Biological Macromolecules, 2016, 82, 719-724.	3.6	62
60	Antioxidant and protective effect of inulin and catechin grafted inulin against CCl4-induced liver injury. International Journal of Biological Macromolecules, 2015, 72, 1479-1484.	3.6	61
61	Development of pork and shrimp freshness monitoring labels based on starch/polyvinyl alcohol matrices and anthocyanins from 14 plants: A comparative study. Food Hydrocolloids, 2022, 124, 107293.	5.6	60
62	Development of antioxidant and antimicrobial packaging films based on chitosan, D-α-tocopheryl polyethylene glycol 1000 succinate and silicon dioxide nanoparticles. Food Packaging and Shelf Life, 2020, 24, 100503.	3.3	58
63	Preparation and characterization of novel phenolic acid (hydroxybenzoic and hydroxycinnamic acid) Tj ETQq1 I Engineering Journal, 2015, 262, 803-812.	0.784314 6.6	rgBT /Overlo 56
64	Anti-inflammatory activity of alkali-soluble polysaccharides from Arctium lappa L. and its effect on gut microbiota of mice with inflammation. International Journal of Biological Macromolecules, 2020, 154, 773-787.	3.6	56
65	Effect of Protocatechuic Acid-Grafted-Chitosan Coating on the Postharvest Quality of <i>Pleurotus eryngii</i> . Journal of Agricultural and Food Chemistry, 2016, 64, 7225-7233.	2.4	55
66	Development of active and smart packaging films based on starch, polyvinyl alcohol and betacyanins from different plant sources. International Journal of Biological Macromolecules, 2021, 183, 358-368.	3.6	55
67	Structural characterization and protective effect of gallic acid grafted O-carboxymethyl chitosan against hydrogen peroxide-induced oxidative damage. International Journal of Biological Macromolecules, 2020, 143, 49-59.	3.6	54
68	In vivo and in vitro anti-inflammatory effects of water-soluble polysaccharide from Arctium lappa. International Journal of Biological Macromolecules, 2019, 135, 717-724.	3.6	47
69	Structural Characterization of Two Water-Soluble Polysaccharides from Black Soybean (<i>Clycine) Tj ETQq1 1</i>	0.784314 2.4	rgBT ₄₃ /Overloc
70	Structural characterization of a water-soluble purple sweet potato polysaccharide and its effect on intestinal inflammation in mice. Journal of Functional Foods, 2019, 61, 103502.	1.6	41
71	Preparation, characterization and application of smart packaging films based on locust bean gum/polyvinyl alcohol blend and betacyanins from cockscomb (Celosia cristata L.) flower. International Journal of Biological Macromolecules, 2021, 191, 679-688.	3.6	41
72	Synthesis, characterization, antioxidant and antimicrobial activities of starch aldehyde-quercetin conjugate. International Journal of Biological Macromolecules, 2020, 156, 462-470.	3.6	40

#	Article	IF	CITATIONS
73	Synthesis, characterization, and antioxidant activity of caffeicâ€acidâ€grafted corn starch. Starch/Staerke, 2018, 70, 1700141.	1.1	39
74	Active/intelligent packaging films developed by immobilizing anthocyanins from purple sweetpotato and purple cabbage in locust bean gum, chitosan and κ-carrageenan-based matrices. International Journal of Biological Macromolecules, 2022, 211, 238-248.	3.6	39
75	Chitosan Films Functionalized with Different Hydroxycinnamic Acids: Preparation, Characterization and Application for Pork Preservation. Foods, 2021, 10, 536.	1.9	36
76	Protective effect of an arabinogalactan from black soybean against carbon tetrachloride-induced acute liver injury in mice. International Journal of Biological Macromolecules, 2018, 117, 659-664.	3.6	35
77	Structure and functional properties of active packaging films prepared by incorporating different flavonols into chitosan based matrix. International Journal of Biological Macromolecules, 2020, 165, 625-634.	3.6	35
78	Recent advances in the preparation, structural characteristics, biological properties and applications of gallic acid grafted polysaccharides. International Journal of Biological Macromolecules, 2020, 156, 1539-1555.	3.6	33
79	Development of chitosan films incorporated with rambutan (Nephelium lappaceum L.) peel extract and their application in pork preservation. International Journal of Biological Macromolecules, 2021, 189, 900-909.	3.6	33
80	Effect of acid hydrolysis on morphology, structure and digestion property of starch from Cynanchum auriculatum Royle ex Wight. International Journal of Biological Macromolecules, 2017, 96, 807-816.	3.6	32
81	Development of active packaging films based on chitosan and nano-encapsulated luteolin. International Journal of Biological Macromolecules, 2021, 182, 545-553.	3.6	32
82	Changes of Reactive Oxygen Species and Related Enzymes in Mitochondria Respiratory Metabolism During the Ripening of Peach Fruit. Agricultural Sciences in China, 2010, 9, 138-146.	0.6	31
83	Effect of Ferulic Acid-Grafted-Chitosan Coating on the Quality of Pork during Refrigerated Storage. Foods, 2021, 10, 1374.	1.9	31
84	Nitric oxide alleviates lignification and softening of water bamboo (Zizania latifolia) shoots during postharvest storage. Food Chemistry, 2020, 332, 127416.	4.2	30
85	Preparation and characterization of antioxidant packaging by chitosan, D-α-tocopheryl polyethylene glycol 1000 succinate and baicalein. International Journal of Biological Macromolecules, 2020, 153, 836-845.	3.6	29
86	Changes in reactive oxygen species production and antioxidant enzyme activity of <i>Agaricus bisporus</i> harvested at different stages of maturity. Journal of the Science of Food and Agriculture, 2013, 93, 2201-2206.	1.7	28
87	Immunomodulatory effects of polysaccharides from purple sweet potato on lipopolysaccharide treated RAW 264.7 macrophages. Journal of Food Biochemistry, 2018, 42, e12535.	1.2	24
88	Effects of 1-MCP on proline, polyamine, and nitric oxide metabolism in postharvest peach fruit under chilling stress. Horticultural Plant Journal, 2021, 7, 188-196.	2.3	24
89	Development of active packaging films based on quaternary ammonium chitosan, polyvinyl alcohol and litchi (Litchi chinensis Sonn.) pericarp extract. Quality Assurance and Safety of Crops and Foods, 2021, 13, 9-19.	1.8	24
90	Effect of starch aldehyde-catechin conjugates on the structural, physical and antioxidant properties of quaternary ammonium chitosan/polyvinyl alcohol films. Food Hydrocolloids, 2022, 124, 107279.	5.6	24

#	Article	IF	CITATIONS
91	Smart packaging films based on locust bean gum, polyvinyl alcohol, the crude extract of Loropetalum chinense var. rubrum petals and its purified fractions. International Journal of Biological Macromolecules, 2022, 205, 141-153.	3.6	24
92	Impact of storage conditions on the structure and functionality of starch/polyvinyl alcohol films containing Lycium ruthenicum anthocyanins. Food Packaging and Shelf Life, 2021, 29, 100693.	3.3	22
93	Antioxidant packaging films developed based on chitosan grafted with different catechins: Characterization and application in retarding corn oil oxidation. Food Hydrocolloids, 2022, 133, 107970.	5.6	21
94	Highly efficient synthesis and characterization of starch aldehyde-catechin conjugate with potent antioxidant activity. International Journal of Biological Macromolecules, 2021, 173, 13-25.	3.6	20
95	Recent advances on the development of food packaging films based on citrus processing wastes: A review. Journal of Agriculture and Food Research, 2022, 9, 100316.	1.2	20
96	Development of shrimp freshness indicating films by immobilizing red pitaya betacyanins and titanium dioxide nanoparticles in polysaccharide-based double-layer matrix. Food Packaging and Shelf Life, 2022, 33, 100871.	3.3	19
97	Development and characterization of chitosan and D-α-tocopheryl polyethylene glycol 1000 succinate composite films containing different flavones. Food Packaging and Shelf Life, 2020, 25, 100531.	3.3	18
98	Polyphenolic-enriched peach peels extract regulates lipid metabolism and improves the gut microbiota composition in high fat diet-fed mice. Journal of Functional Foods, 2020, 72, 104082.	1.6	18
99	Study on the bioavailability of stevioside-encapsulized lutein and its mechanism. Food Chemistry, 2021, 354, 129528.	4.2	18
100	Isolation, structure and biological activity of polysaccharides from the fruits of Lycium ruthenicum Murr: A review. Carbohydrate Polymers, 2022, 291, 119618.	5.1	18
101	Morphology, structural and physicochemical properties of starch from the root of Cynanchum auriculatum Royle ex Wight. International Journal of Biological Macromolecules, 2016, 93, 107-116.	3.6	17
102	Structural and physicochemical properties of chemically modified Chinese water chestnut [Eleocharis dulcis (Burm. f.) Trin. ex Hensch] starches. International Journal of Biological Macromolecules, 2018, 120, 547-556.	3.6	15
103	Anti-inflammatory activity of a water-soluble polysaccharide from the roots of purple sweet potato. RSC Advances, 2020, 10, 39673-39686.	1.7	15
104	Konjac Glucomannan Oligosaccharides Prevent Intestinal Inflammation Through SIGNR1â€Mediated Regulation of Alternatively Activated Macrophages. Molecular Nutrition and Food Research, 2021, 65, e2001010.	1.5	15
105	Effects of ascorbate and hydroxyl radical degradations on the structural, physicochemical, antioxidant and film forming properties of chitosan. International Journal of Biological Macromolecules, 2018, 114, 1086-1093.	3.6	13
106	Effect of chitosan/starch aldehydeâ€catechin conjugate composite coating on the quality and shelf life of fresh pork loins. Journal of the Science of Food and Agriculture, 2022, 102, 5238-5249.	1.7	13
107	Changes in cell walls during fruit ripening in Chinese â€~Honey' peach. Journal of Horticultural Science and Biotechnology, 2013, 88, 37-46.	0.9	12
108	Recent Advances in the Preparation, Characterization and Applications of Locust Bean Gum-Based Films. Journal of Renewable Materials, 2020, 8, 1565-1579.	1.1	12

#	Article	IF	CITATIONS
109	Structure, stability and antioxidant activity of dialdehyde starch grafted with epicatechin, epicatechin gallate, epigallocatechin and epigallocatechin gallate. Journal of the Science of Food and Agriculture, 2022, 102, 6373-6386.	1.7	12
110	Polyphenols from <i>Arctium lappa L</i> ameliorate doxorubicinâ€induced heart failure and improve gut microbiota composition in mice. Journal of Food Biochemistry, 2022, 46, e13731.	1.2	11
111	In vitro and in vivo ameliorative effects of polyphenols from purple potato leaves on renal injury and associated inflammation induced by hyperuricemia. Journal of Food Biochemistry, 2022, 46, e14049.	1.2	11
112	Formation of Nanocomplexes between Carboxymethyl Inulin and Bovine Serum Albumin via pH-Induced Electrostatic Interaction. Molecules, 2019, 24, 3056.	1.7	10
113	Improving the digestive stability and prebiotic effect of carboxymethyl chitosan by grafting with gallic acid: In vitro gastrointestinal digestion and colonic fermentation evaluation. International Journal of Biological Macromolecules, 2022, 214, 685-696.	3.6	9
114	Anthocyanins from purple sweet potato alleviate doxorubicinâ€induced cardiotoxicity in vitro and in vivo. Journal of Food Biochemistry, 2021, 45, e13869.	1.2	8
115	Horseradish peroxidase catalyzed grafting of chitosan oligosaccharide with different flavonols: structures, antioxidant activity and edible coating application. Journal of the Science of Food and Agriculture, 2022, 102, 4363-4372.	1.7	8
116	Impact of purple sweet potato (<i>Ipomoea batatas</i> L.) polysaccharides on the fecal metabolome in a murine colitis model. RSC Advances, 2022, 12, 11376-11390.	1.7	8
117	Green preparation of gold nanoparticles with Tremella fuciformis for surface enhanced Raman scattering sensing. Applied Surface Science, 2018, 427, 210-218.	3.1	7
118	Nitric Oxide Extends the Postharvest Life of Water Bamboo Shoots Partly by Maintaining Mitochondrial Structure and Energy Metabolism. International Journal of Molecular Sciences, 2022, 23, 1607.	1.8	6
119	Effects of Dietary Pork Fat Cooked Using Different Methods on Glucose and Lipid Metabolism, Liver Inflammation and Gut Microbiota in Rats. Foods, 2021, 10, 3030.	1.9	6