
Rachid Brahmi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6910954/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Catalysis in VOC Abatement. Topics in Catalysis, 2011, 54, 1224-1256.	2.8	169
2	Removal of oxygenated volatile organic compounds by catalytic oxidation over Zr–Ce–Mn catalysts. Journal of Hazardous Materials, 2011, 188, 422-427.	12.4	97
3	Toward new benchmark adsorbents: preparation and characterization of activated carbon from argan nut shell for bisphenol A removal. Environmental Science and Pollution Research, 2018, 25, 1869-1882.	5.3	81
4	Steam activation of waste biomass: highly microporous carbon, optimization of bisphenol A, and diuron adsorption by response surface methodology. Environmental Science and Pollution Research, 2018, 25, 35657-35671.	5.3	55
5	Study of the dry reforming of methane and ethanol using Rh catalysts supported on doped alumina. Applied Catalysis A: General, 2015, 504, 576-584.	4.3	53
6	Study on the catalytic oxidation of DMDS over Pt-Cu catalysts supported on Al2O3, AlSi2O and SiO2. Applied Catalysis B: Environmental, 2016, 181, 24-33.	20.2	42
7	Comparative study on the support properties in the total oxidation of dichloromethane over Pt catalysts. Chemical Engineering Journal, 2017, 313, 1010-1022.	12.7	37
8	Utilization of Volatile Organic Compounds as an Alternative for Destructive Abatement. Catalysts, 2015, 5, 1092-1151.	3.5	35
9	Comparison of Catalyst Support Between Monolith and Pellet in Hydrogen Peroxide Thrusters. Journal of Propulsion and Power, 2010, 26, 439-445.	2.2	30
10	Transient Behavior of H2O2 Thruster: Effect of Injector Type and Ullage Volume. Journal of Propulsion and Power, 2009, 25, 1357-1360.	2.2	20
11	Study on sulfur deactivation of catalysts for DMDS oxidation. Applied Catalysis B: Environmental, 2017, 206, 653-665.	20.2	20
12	Catalytic abatement of dichloromethane over transition metal oxide catalysts: Thermodynamic modelling and experimental studies. Journal of Cleaner Production, 2019, 228, 814-823.	9.3	19
13	Monolithic catalysts for the decomposition of energetic compounds. Studies in Surface Science and Catalysis, 2010, 175, 35-42.	1.5	18
14	Total Oxidation of Dichloromethane Over Metal Oxide Catalysts. Topics in Catalysis, 2013, 56, 679-687.	2.8	16
15	Assessment of Catalysts for Hydrogen-Peroxide-Based Thrusters in a Flow Reactor. Journal of Propulsion and Power, 2013, 29, 321-330.	2.2	14
16	Copper-zinc oxide catalyst. Part II. Preparation, IR characterization and thermal properties of novel bimetallic precursors. Thermochimica Acta, 1996, 276, 209-220.	2.7	12
17	Chemical engineering study for hydroxylammonium nitrate monopropellant decomposition over monolith and grain metal-based catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2014, 111, 71-88.	1.7	12
18	Copper-zinc oxide catalysts. Part IV. Thermal treatment in air, argon and hydrogen and XRD study of new bimetallic precursors-direct formation of alloys. Thermochimica Acta, 1996, 279, 65-76.	2.7	11

RACHID BRAHMI

#	Article	IF	CITATIONS
19	Ceramic catalysts for the decomposition of H2O2 - Influence of wash-coat procedure and active phase. Studies in Surface Science and Catalysis, 2006, 162, 649-656.	1.5	11
20	Photocatalysis and catalytic wet air oxidation: Degradation and toxicity of bisphenol A containing wastewaters. Environmental Technology (United Kingdom), 2020, 41, 3272-3283.	2.2	8
21	Catalytic wet air oxidation of high BPA concentration over iron-based catalyst supported on orthophosphate. Environmental Science and Pollution Research, 2020, 27, 32533-32543.	5.3	8
22	Catalytic decomposition of energetic compounds - Influence of catalyst shape and ceramic substrate. , 2006, , .		7
23	Catalytic Partial Oxidation of Methanol and Methyl Mercaptan: Studies on the Selectivity of TiO2 and CeO2 Supported V2O5 Catalysts. Topics in Catalysis, 2013, 56, 650-657.	2.8	7
24	Total Oxidation of Dichloromethane over Silica Modified Alumina Catalysts Washcoated on Ceramic Monoliths. Catalysts, 2018, 8, 339.	3.5	7
25	Preparation of monolithic catalysts for space propulsion applications. Studies in Surface Science and Catalysis, 2010, 175, 755-758.	1.5	6
26	Preparation and characterization of nanocrystallines Mn-Ce-Zr mixed oxide catalysts by sol-gel method: application to the complete oxidation of n-butanol. Studies in Surface Science and Catalysis, 2010, 175, 731-734.	1.5	6
27	Influence of the formulation of catalysts deposited on cordierite monoliths for acetic acid oxidation. Comptes Rendus Chimie, 2018, 21, 182-193.	0.5	6
28	PROPULSION AND CATALYSIS - HISTORICAL SURVEY, UP-TO-DATE OVERVIEW, AND CURRENT CHALLENGES. International Journal of Energetic Materials and Chemical Propulsion, 2010, 9, 413-436.	0.3	4
29	Pulse Response Times of Hydrogen Peroxide Monopropellant Thrusters. , 2009, , .		2

30 Catalytic Ignition of Cold H2/O2 Bipropellants. , 2009, , .

1