
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6910822/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CELL-CELL COMMUNICATION IN GRAM-POSITIVE BACTERIA. Annual Review of Microbiology, 1997, 51, 527-564.	2.9	432
2	Plasmid transfer in Streptococcus faecalis: Production of multiple sex pheromones by recipients. Plasmid, 1979, 2, 454-465.	0.4	301
3	Improved Vectors for Nisin-Controlled Expression in Gram-Positive Bacteria. Plasmid, 2000, 44, 183-190.	0.4	244
4	Esp-Independent Biofilm Formation by Enterococcus faecalis. Journal of Bacteriology, 2004, 186, 154-163.	1.0	244
5	Retrohoming of a Bacterial Group II Intron. Cell, 1998, 94, 451-462.	13.5	208
6	Development of a host-genotype-independent counterselectable marker and a high-frequency conjugative delivery system and their use in genetic analysis of Enterococcus faecalis. Plasmid, 2007, 57, 131-144.	0.4	172
7	Aggregation and Binding Substances Enhance Pathogenicity in Rabbit Models of <i>Enterococcus faecalis</i> Endocarditis. Infection and Immunity, 1998, 66, 218-223.	1.0	160
8	High-resolution Visualization of the Microbial Glycocalyx with Low-voltage Scanning Electron Microscopy: Dependence on Cationic Dyes. Journal of Histochemistry and Cytochemistry, 2004, 52, 1427-1435.	1.3	154
9	Role of the Enterococcus faecalis GelE Protease in Determination of Cellular Chain Length, Supernatant Pheromone Levels, and Degradation of Fibrin and Misfolded Surface Proteins. Journal of Bacteriology, 2003, 185, 3613-3623.	1.0	140
10	A eukaryotic-type Ser/Thr kinase in Enterococcus faecalis mediates antimicrobial resistance and intestinal persistence. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3508-3513.	3.3	138
11	Direct stimulation of the transfer of antibiotic resistance by sex pheromones in Streptococcus faecalis. Plasmid, 1981, 6, 270-278.	0.4	136
12	Enterococcus faecalis Produces Abundant Extracellular Structures Containing DNA in the Absence of Cell Lysis during Early Biofilm Formation. MBio, 2012, 3, e00193-12.	1.8	136
13	<i>Enterococcus faecalis</i> Bearing Aggregation Substance Is Resistant to Killing by Human Neutrophils despite Phagocytosis and Neutrophil Activation. Infection and Immunity, 1999, 67, 6067-6075.	1.0	132
14	Enterococcal Metabolite Cues Facilitate Interspecies Niche Modulation and Polymicrobial Infection. Cell Host and Microbe, 2016, 20, 493-503.	5.1	131
15	Multiple Roles for Enterococcus faecalis Glycosyltransferases in Biofilm-Associated Antibiotic Resistance, Cell Envelope Integrity, and Conjugative Transfer. Antimicrobial Agents and Chemotherapy, 2015, 59, 4094-4105.	1.4	130
16	Comparison of OG1RF and an Isogenic fsrB Deletion Mutant by Transcriptional Analysis: the Fsr System of Enterococcus faecalis Is More than the Activator of Gelatinase and Serine Protease. Journal of Bacteriology, 2006, 188, 2875-2884.	1.0	129
17	Structure of peptide sex pheromone receptor PrgX and PrgX/pheromone complexes and regulation of conjugation in Enterococcus faecalis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18596-18601.	3.3	117
18	Acceleration of Enterococcus faecalis Biofilm Formation by Aggregation Substance Expression in an Ex Vivo Model of Cardiac Valve Colonization. PLoS ONE, 2010, 5, e15798.	1.1	112

#	Article	lF	CITATIONS
19	The peptide pheromone-inducible conjugation system of Enterococcus faecalis plasmid pCF10: cell–cell signalling, gene transfer, complexity and evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 1185-1193.	1.8	110
20	Enterococcal Sex Pheromones: Signaling, Social Behavior, and Evolution. Annual Review of Genetics, 2013, 47, 457-482.	3.2	99
21	Characterization of the Pheromone Response of the Enterococcus faecalis Conjugative Plasmid pCF10: Complete Sequence and Comparative Analysis of the Transcriptional and Phenotypic Responses of pCF10-Containing Cells to Pheromone Induction. Journal of Bacteriology, 2005, 187, 1044-1054.	1.0	96
22	Extracellular Electron Transfer Powers Enterococcus faecalis Biofilm Metabolism. MBio, 2018, 9, .	1.8	96
23	Development and Use of an Efficient System for Random <i>mariner</i> Transposon Mutagenesis To Identify Novel Genetic Determinants of Biofilm Formation in the Core <i>Enterococcus faecalis</i> Genome. Applied and Environmental Microbiology, 2008, 74, 3377-3386.	1.4	95
24	Enterococcal sex pheromone precursors are part of signal sequences for surface lipoproteins. Molecular Microbiology, 2000, 35, 246-247.	1.2	94
25	Convergent transcription confers a bistable switch in <i>Enterococcus faecalis</i> conjugation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9721-9726.	3.3	88
26	Multicellular behavior in bacteria: communication, cooperation, competition and cheating. BioEssays, 2008, 30, 296-298.	1.2	86
27	Modified Lactic Acid Bacteria Detect and Inhibit Multiresistant Enterococci. ACS Synthetic Biology, 2015, 4, 299-306.	1.9	85
28	<scp><i>E</i></scp> <i>nterococcus faecalis</i> â€ <scp>pCF</scp> 10â€encoded surface proteins <scp>PrgA</scp> , <scp>PrgB</scp> (aggregation substance) and <scp>PrgC</scp> contribute to plasmid transfer, biofilm formation and virulence. Molecular Microbiology, 2015, 95, 660-677.	1.2	82
29	In Vivo Induction of Virulence and Antibiotic Resistance Transfer in Enterococcus faecalis Mediated by the Sex Pheromone-Sensing System of pCF10. Infection and Immunity, 2002, 70, 716-723.	1.0	81
30	Multiple Functional Domains of Enterococcus faecalis Aggregation Substance Asc10 Contribute to Endocarditis Virulence. Infection and Immunity, 2009, 77, 539-548.	1.0	81
31	Enterococcal peptide sex pheromones: synthesis and control of biological activity. Peptides, 2004, 25, 1377-1388.	1.2	80
32	Two targets in pCF10 DNA for PrgX binding: their role in production of Qa and prgX mRNA and in regulation of pheromone-inducible conjugation. Journal of Molecular Biology, 2002, 315, 995-1007.	2.0	78
33	ccfA, the Genetic Determinant for the cCF10 Peptide Pheromone in Enterococcus faecalis OG1RF. Journal of Bacteriology, 2002, 184, 1155-1162.	1.0	77
34	Enterococcal Virulence. , 2014, , 301-354.		77
35	Molecular basis for control of conjugation by bacterial pheromone and inhibitor peptides. Molecular Microbiology, 2006, 62, 958-969.	1.2	75
36	Antagonistic self-sensing and mate-sensing signaling controls antibiotic-resistance transfer. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7086-7090.	3.3	66

#	Article	IF	CITATIONS
37	AhrC and Eep Are Biofilm Infection-Associated Virulence Factors in Enterococcus faecalis. Infection and Immunity, 2013, 81, 1696-1708.	1.0	65
38	Nonhuman Reservoirs of Enterococci. , 2014, , 55-99.		63
39	Mutants ofEnterococcus faecalis deficient as recipients in mating with donors carrying pheromone-inducible plasmids. Plasmid, 1990, 24, 57-67.	0.4	60
40	Characterization of the Sequence Specificity Determinants Required for Processing and Control of Sex Pheromone by the Intramembrane Protease Eep and the Plasmid-Encoded Protein PrgY. Journal of Bacteriology, 2008, 190, 1172-1183.	1.0	60
41	Enterococcal Sex Pheromones: Evolutionary Pathways to Complex, Two-Signal Systems. Journal of Bacteriology, 2016, 198, 1556-1562.	1.0	60
42	Restructuring of Enterococcus faecalis biofilm architecture in response to antibiotic-induced stress. Npj Biofilms and Microbiomes, 2017, 3, 15.	2.9	60
43	Enterococci as Members of the Intestinal Microflora of Humans. , 0, , 101-132.		60
44	Identification and Characterization of the Genes ofEnterococcus faecalisPlasmid pCF10 Involved in Replication and in Negative Control of Pheromone-Inducible Conjugation. Plasmid, 1996, 35, 46-57.	0.4	57
45	Heterologous Inducible Expression of Enterococcus faecalis pCF10 Aggregation Substance Asc10 in Lactococcus lactis and Streptococcus gordonii Contributes to Cell Hydrophobicity and Adhesion to Fibrin. Journal of Bacteriology, 2000, 182, 2299-2306.	1.0	57
46	Comprehensive Functional Analysis of the Enterococcus faecalis Core Genome Using an Ordered, Sequence-Defined Collection of Insertional Mutations in Strain OG1RF. MSystems, 2018, 3, .	1.7	57
47	Parallel Genomics Uncover Novel Enterococcal-Bacteriophage Interactions. MBio, 2020, 11, .	1.8	57
48	Development of a Method for Markerless Genetic Exchange in Enterococcus faecalis and Its Use in Construction of a srtA Mutant. Applied and Environmental Microbiology, 2005, 71, 5837-5849.	1.4	55
49	<i>Enterococcus faecalis</i> PcfC, a Spatially Localized Substrate Receptor for Type IV Secretion of the pCF10 Transfer Intermediate. Journal of Bacteriology, 2008, 190, 3632-3645.	1.0	55
50	Functional Genomics of <i>Enterococcus faecalis</i> : Multiple Novel Genetic Determinants for Biofilm Formation in the Core Genome. Journal of Bacteriology, 2009, 191, 2806-2814.	1.0	55
51	<i>Enterococcus faecalis</i> readily colonizes the entire gastrointestinal tract and forms biofilms in a germ-free mouse model. Virulence, 2017, 8, 282-296.	1.8	55
52	Use of Recombinase-Based <i>In Vivo</i> Expression Technology To Characterize Enterococcus faecalis Gene Expression during Infection Identifies <i>In Vivo</i> -Expressed Antisense RNAs and Implicates the Protease Eep in Pathogenesis. Infection and Immunity, 2012, 80, 539-549.	1.0	54
53	History, Taxonomy, Biochemical Characteristics, and Antibiotic Susceptibility Testing of Enterococci. , 0, , 1-54.		54
54	A paracrine peptide sex pheromone also acts as an autocrine signal to induce plasmid transfer and virulence factor expression in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15617-15622.	3.3	53

#	Article	IF	CITATIONS
55	Pheromone cCF10 and plasmid pCF10â€encoded regulatory molecules act postâ€transcriptionally to activate expression of downstream conjugation functions. Molecular Microbiology, 1997, 24, 285-294.	1.2	52
56	Characterization of cis-acting prgQ mutants: evidence for two distinct repression mechanisms by Qa RNA and PrgX protein in pheromone-inducible enterococcal plasmid pCF10. Molecular Microbiology, 2003, 51, 271-281.	1.2	51
57	Specificity determinants of conjugative DNA processing in the Enterococcus faecalis plasmid pCF10 and the Lactococcus lactis plasmid pRS01. Molecular Microbiology, 2007, 63, 1549-1564.	1.2	51
58	Analysis of expression of prgX , a key negative regulator of the transfer of the Enterococcus faecalis pheromone-inducible plasmid pCF10 1 1Edited by M. Gottesman. Journal of Molecular Biology, 2000, 297, 861-875.	2.0	50
59	Conjugation and Genetic Exchange in Enterococci. , 0, , 265-300.		48
60	Biofilm growth alters regulation of conjugation by a bacterial pheromone. Molecular Microbiology, 2011, 81, 1499-1510.	1.2	46
61	Bistability versus Bimodal Distributions in Gene Regulatory Processes from Population Balance. PLoS Computational Biology, 2011, 7, e1002140.	1.5	46
62	Environmental and Animal-Associated Enterococci. Advances in Applied Microbiology, 2014, 87, 147-186.	1.3	45
63	<i>Enterococcus faecalis</i> Sex Pheromone cCF10 Enhances Conjugative Plasmid Transfer <i>In Vivo</i> . MBio, 2018, 9, .	1.8	45
64	Phage infection and sub-lethal antibiotic exposure mediate Enterococcus faecalis type VII secretion system dependent inhibition of bystander bacteria. PLoS Genetics, 2021, 17, e1009204.	1.5	45
65	Pheromoneâ€inducible expression of an aggregation protein in Enterococcus faecalis requires interaction of a plasmidâ€encoded RNA with components of the ribosome. Molecular Microbiology, 1997, 24, 295-308.	1.2	44
66	Specific Control of Endogenous cCF10 Pheromone by a Conserved Domain of the pCF10-Encoded Regulatory Protein PrgY in Enterococcus faecalis. Journal of Bacteriology, 2005, 187, 4830-4843.	1.0	44
67	Formation of Vegetations during Infective Endocarditis Excludes Binding of Bacterialâ€Specific Host Antibodies toEnterococcus faecalis. Journal of Infectious Diseases, 2002, 185, 994-997.	1.9	43
68	Peptide pheromone-induced transfer of plasmid pCF10 in Enterococcus faecalis: probing the genetic and molecular basis for specificity of the pheromone response. Peptides, 2001, 22, 1529-1539.	1.2	40
69	The Aggregation Domain of Aggregation Substance, Not the RGD Motifs, Is Critical for Efficient Internalization by HT-29 Enterocytes. Infection and Immunity, 2003, 71, 5682-5689.	1.0	40
70	Acquired Antibiotic Resistances in Enterococci. , 0, , 355-383.		40
71	Evaluation of the Enterococcus faecalis Biofilm-Associated Virulence Factors AhrC and Eep in Rat Foreign Body Osteomyelitis and In Vitro Biofilm-Associated Antimicrobial Resistance. PLoS ONE, 2015, 10, e0130187.	1.1	40
72	Pheromone-inducible conjugation in Enterococcus faecalis: A model for the evolution of biological complexity?. International Journal of Medical Microbiology, 2006, 296, 141-147.	1.5	39

#	Article	IF	CITATIONS
73	Enterococcus faecalis Endocarditis Severity in Rabbits Is Reduced by IgG Fabs Interfering with Aggregation Substance. PLoS ONE, 2010, 5, e13194.	1.1	36
74	A Widely Used In Vitro Biofilm Assay Has Questionable Clinical Significance for Enterococcal Endocarditis. PLoS ONE, 2014, 9, e107282.	1.1	36
75	Antibodies to a Surface-Exposed, N-terminal Domain of Aggregation Substance Are Not Protective in the Rabbit Model of Enterococcus faecalis Infective Endocarditis. Infection and Immunity, 2001, 69, 3305-3314.	1.0	35
76	Transcriptome Analysis of Enterococcus faecalis during Mammalian Infection Shows Cells Undergo Adaptation and Exist in a Stringent Response State. PLoS ONE, 2014, 9, e115839.	1.1	35
77	Genetic characterization of the conjugative DNA processing system of enterococcal plasmid pCF10. Plasmid, 2006, 56, 102-111.	0.4	34
78	Regulatory circuits controlling enterococcal conjugation: lessons for functional genomics. Current Opinion in Microbiology, 2011, 14, 174-180.	2.3	34
79	Enterococcal Disease, Epidemiology, and Treatment. , 0, , 385-408.		34
80	Enterococcus faecalis pheromone-responsive protein PrgX: genetic separation of positive autoregulatory functions from those involved in negative regulation of conjugative plasmid transfer. Molecular Microbiology, 2004, 54, 520-532.	1.2	33
81	Exploiting biofilm phenotypes for functional characterization of hypothetical genes in Enterococcus faecalis. Npj Biofilms and Microbiomes, 2019, 5, 23.	2.9	33
82	Direct Evidence for Control of the Pheromone-Inducible <i>prgQ</i> Operon of <i>Enterococcus faecalis</i> Plasmid pCF10 by a Countertranscript-Driven Attenuation Mechanism. Journal of Bacteriology, 2010, 192, 1634-1642.	1.0	32
83	Dysbiosis patterns during re-induction/salvage versus induction chemotherapy for acute leukemia. Scientific Reports, 2019, 9, 6083.	1.6	32
84	Gut dysbiosis during antileukemia chemotherapy versus allogeneic hematopoietic cell transplantation. Cancer, 2020, 126, 1434-1447.	2.0	30
85	Pathogenic mechanisms of enterococcal endocarditis. Current Infectious Disease Reports, 2000, 2, 315-321.	1.3	29
86	Dominant-negative mutants of prgX: evidence for a role for PrgX dimerization in negative regulation of pheromone-inducible conjugation. Molecular Microbiology, 2004, 39, 1307-1320.	1.2	29
87	Structural analysis of the Anti-Q–Qs interaction: RNA-mediated regulation of E. faecalis plasmid pCF10 conjugation. Plasmid, 2010, 64, 26-35.	0.4	29
88	Regulation of intron function: efficient splicing in vivo of a bacterial group II intron requires a functional promoter within the intron. Molecular Microbiology, 2002, 37, 639-651.	1.2	28
89	Physiology of Enterococci. , 0, , 133-175.		28
90	<scp>P</scp> rg <scp>U</scp> : a suppressor of sex pheromone toxicity in <scp><i>E</i></scp> <i>nterococcus faecalis</i> . Molecular Microbiology, 2017, 103, 398-412.	1.2	27

GARY M DUNNY

#	Article	IF	CITATIONS
91	Conserved Target for Group II Intron Insertion in Relaxase Genes of Conjugative Elements of Gram-Positive Bacteria. Journal of Bacteriology, 2004, 186, 2393-2401.	1.0	26
92	Microbiota and Pathogen Proteases Modulate Type III Secretion Activity in Enterohemorrhagic Escherichia coli. MBio, 2018, 9, .	1.8	26
93	Expression of Adhesive Pili and the Collagen-Binding Adhesin Ace Is Activated by ArgR Family Transcription Factors in Enterococcus faecalis. Journal of Bacteriology, 2018, 200, .	1.0	26
94	Mechanisms of peptide sex pheromone regulation of conjugation in <i>Enterococcus faecalis</i> . MicrobiologyOpen, 2017, 6, e00492.	1.2	25
95	Mechanistic Features of the Enterococcal pCF10 Sex Pheromone Response and the Biology of Enterococcus faecalis in Its Natural Habitat. Journal of Bacteriology, 2018, 200, .	1.0	25
96	Examination of Enterococcus faecalis Toxin-Antitoxin System Toxin Fst Function Utilizing a Pheromone-Inducible Expression Vector with Tight Repression and Broad Dynamic Range. Journal of Bacteriology, 2017, 199, .	1.0	23
97	An Origin of Transfer (oriT) on the Conjugative Element pRS01 from Lactococcus lactis subsp. lactis ML3. Applied and Environmental Microbiology, 1998, 64, 1541-1544.	1.4	23
98	Role of <i>epaQ</i> , a Previously Uncharacterized Enterococcus faecalis Gene, in Biofilm Development and Antimicrobial Resistance. Journal of Bacteriology, 2019, 201, .	1.0	22
99	Plasmids and Transposons. , 0, , 219-263.		22
100	Enterococcus faecalis 6-Phosphogluconolactonase Is Required for Both Commensal and Pathogenic Interactions with Manduca sexta. Infection and Immunity, 2015, 83, 396-404.	1.0	21
101	Antagonistic Donor Density Effect Conserved in Multiple Enterococcal Conjugative Plasmids. Applied and Environmental Microbiology, 2016, 82, 4537-4545.	1.4	20
102	Analysis of the Amino Acid Sequence Specificity Determinants of the Enterococcal cCF10 Sex Pheromone in Interactions with the Pheromone-Sensing Machinery. Journal of Bacteriology, 2007, 189, 1399-1406.	1.0	19
103	Structure and Mode of Peptide Binding of Pheromone Receptor PrgZ. Journal of Biological Chemistry, 2012, 287, 37165-37170.	1.6	19
104	RNA-Mediated Reciprocal Regulation between Two Bacterial Operons Is RNase III Dependent. MBio, 2011, 2, .	1.8	18
105	The Influence of Biofilms in the Biology of Plasmids. Microbiology Spectrum, 2014, 2, 0012.	1.2	18
106	Stochasticity in the enterococcal sex pheromone response revealed by quantitative analysis of transcription in single cells. PLoS Genetics, 2017, 13, e1006878.	1.5	18
107	Group II introns and expression of conjugative transfer functions in lactic acid bacteria. , 1999, 76, 77-88.		17
108	Plasmid Acquisition Alters Vancomycin Susceptibility in Clostridioides difficile. Gastroenterology, 2021, 160, 941-945.e8.	0.6	17

#	Article	IF	CITATIONS
109	<i>In Vivo</i> and <i>In Vitro</i> Analyses of Regulation of the Pheromone-Responsive <i>prgQ</i> Promoter by the PrgX Pheromone Receptor Protein. Journal of Bacteriology, 2012, 194, 3386-3394.	1.0	16
110	Genome-Wide Mutagenesis Identifies Factors Involved in Enterococcus faecalis Vaginal Adherence and Persistence. Infection and Immunity, 2020, 88, .	1.0	16
111	Comparative Biofilm Assays Using Enterococcus faecalis OG1RF Identify New Determinants of Biofilm Formation. MBio, 2021, 12, e0101121.	1.8	16
112	Pretransplant Gut Colonization with Intrinsically Vancomycin-Resistant Enterococci (E. gallinarum) Tj ETQq0 0 0 Blood and Marrow Transplantation, 2018, 24, 1260-1263.	rgBT /Ove 2.0	rlock 10 Tf 50 15
113	A Conjugation-Based System for Genetic Analysis of Group II Intron Splicing in Lactococcus lactis. Journal of Bacteriology, 2004, 186, 1991-1998.	1.0	14
114	Enterococcal PrgA Extends Far Outside the Cell and Provides Surface Exclusion to Protect against Unwanted Conjugation. Journal of Molecular Biology, 2020, 432, 5681-5695.	2.0	13
115	Enterococcus faecalis Enhances Expression and Activity of the Enterohemorrhagic Escherichia coli Type III Secretion System. MBio, 2019, 10, .	1.8	12
116	Flow cytometric analysis of growth of two Streptococcus gordonii derivatives. Journal of Microbiological Methods, 1999, 34, 223-233.	0.7	10
117	Probiotic <i>Bacillus</i> Affects Enterococcus faecalis Antibiotic Resistance Transfer by Interfering with Pheromone Signaling Cascades. Applied and Environmental Microbiology, 2021, 87, e0044221.	1.4	9
118	Vancomycin-resistance gene cluster, vanC, in the gut microbiome of acute leukemia patients undergoing intensive chemotherapy. PLoS ONE, 2019, 14, e0223890.	1.1	8
119	Enterococcal Endocarditis: Hiding in Plain Sight. Frontiers in Cellular and Infection Microbiology, 2021, 11, 722482.	1.8	8
120	Analogous Telesensing Pathways Regulate Mating and Virulence in Two Opportunistic Human Pathogens. MBio, 2010, 1, .	1.8	7
121	Polymer Adhesin Domains in Gram-Positive Cell Surface Proteins. Frontiers in Microbiology, 2020, 11, 599899.	1.5	7
122	Enterococcal Cell Wall. , 0, , 177-218.		7
123	Identification of a conserved branched RNA structure that functions as a factor-independent terminator. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3573-3578.	3.3	6
124	Effects of endogenous levels of master regulator PrgX and peptide pheromones on inducibility of conjugation in the enterococcal pCF10 system. Molecular Microbiology, 2019, 112, 1010-1023.	1.2	6
125	Single-Cell Analysis Reveals that the Enterococcal Sex Pheromone Response Results in Expression of Full-Length Conjugation Operon Transcripts in All Induced Cells. Journal of Bacteriology, 2020, 202, .	1.0	5
126	Two ABC transport systems carry out peptide uptake in <i>Enterococcus faecalis</i> : Their roles in growth and in uptake of sex pheromones. Molecular Microbiology, 2021, 116, 459-469.	1.2	5

GARY M DUNNY

#	Article	IF	CITATIONS
127	Early E. casseliflavus gut colonization and outcomes of allogeneic hematopoietic cell transplantation. PLoS ONE, 2019, 14, e0220850.	1.1	4
128	Enterococcal PrgU Provides Additional Regulation of Pheromone-Inducible Conjugative Plasmids. MSphere, 2021, 6, e0026421.	1.3	4
129	Dynamics of plasmid-mediated niche invasion, immunity to invasion, and pheromone-inducible conjugation in the murine gastrointestinal tract. Nature Communications, 2022, 13, 1377.	5.8	4
130	<i>Enterococcus faecalis</i> colonizes and forms persistent biofilm microcolonies on undamaged endothelial surfaces in a rabbit endovascular infection model. FEMS Microbes, 2021, 2, xtab014.	0.8	3
131	The Phosphatase Bph and Peptidyl-Prolyl Isomerase PrsA Are Required for Gelatinase Expression and Activity in Enterococcus faecalis. Journal of Bacteriology, 2022, 204, .	1.0	3
132	The Genome of Enterococcus faecalis V583: a Tool for Discovery. , 0, , 409-415.		2
133	New Insights into Pheromone Control and Response in Enterococcus faecalis pCF10. , 0, , 31-49.		2
134	Characterization of the lactococcal conjugative element pRS01 using IS946-mediated mutagenesis. Cytotechnology, 1998, 20, 71-78.	0.7	1
135	Use of electroporation in genetic analysis of enterococcal virulence. Cytotechnology, 1998, 20, 79-84.	0.7	1
136	A new flavor of entry exclusion in ICE elements provides a selective advantage for the element and its host. Molecular Microbiology, 2019, 112, 1061-1065.	1.2	1
137	Antimicrobial Resistance in Biofilm Communities. Springer Series on Biofilms, 2015, , 55-84.	0.0	1
138	High Resolution Detection of Cell Adhesion Molecules Using Low Voltage FESEM Acta Histochemica Et Cytochemica, 1994, 27, 491-493.	0.8	0
139	The Influence of Biofilms in the Biology of Plasmids. , 0, , 315-323.		0