Yana Mukhamedshina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6910080/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Extracellular Matrix in Neural Plasticity and Regeneration. Cellular and Molecular Neurobiology, 2022, 42, 647-664.	1.7	28
2	Cellular and Molecular Gradients in the Ventral Horns With Increasing Distance From the Injury Site After Spinal Cord Contusion. Frontiers in Cellular Neuroscience, 2022, 16, 817752.	1.8	4
3	The Study of Cerebrospinal Fluid microRNAs in Spinal Cord Injury and Neurodegenerative Diseases: Methodological Problems and Possible Solutions. International Journal of Molecular Sciences, 2022, 23, 114.	1.8	6
4	Application of Autologous Peripheral Blood Mononuclear Cells into the Area of Spinal Cord Injury in a Subacute Period: A Feasibility Study in Pigs. Biology, 2021, 10, 87.	1.3	4
5	Blood Serum Cytokines in Patients with Subacute Spinal Cord Injury: A Pilot Study to Search for Biomarkers of Injury Severity. Brain Sciences, 2021, 11, 322.	1.1	15
6	The Function of NG2/CSPG4-expressing Cells in the Rat Spinal Cord Injury: An Immunoelectron Microscopy Study. Neuroscience, 2021, 467, 142-149.	1.1	3
7	Genetic Modification of Mesenchymal Stem Cells for Neurological Disease Therapy: What Effects Does it Have on Phenotype/Cell Behavior, Determining Their Effectiveness?. Molecular Diagnosis and Therapy, 2020, 24, 683-702.	1.6	4
8	Improving Culture Conditions, Proliferation, and Migration of Porcine Mesenchymal Stem Cells on Spinal Cord Contusion Injury Model in vitro. Cells Tissues Organs, 2020, 209, 236-247.	1.3	3
9	Different Approaches to Modulation of Microglia Phenotypes After Spinal Cord Injury. Frontiers in Systems Neuroscience, 2019, 13, 37.	1.2	70
10	Therapeutic Potential of Extracellular Vesicles for the Treatment of Nerve Disorders. Frontiers in Neuroscience, 2019, 13, 163.	1.4	71
11	Effects of Transplanted Umbilical Cord Blood Mononuclear Cells Overexpressing GDNF on Spatial Memory and Hippocampal Synaptic Proteins in a Mouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2019, 69, 443-453.	1.2	18
12	Mesenchymal Stem Cell Therapy for Spinal Cord Contusion: A Comparative Study on Small and Large Animal Models. Biomolecules, 2019, 9, 811.	1.8	38
13	Mesenchymal stem cells and the neuronal microenvironment in the area of spinal cord injury. Neural Regeneration Research, 2019, 14, 227.	1.6	64
14	PTEN expression in astrocytic processes after spinal cord injury. Molecular and Cellular Neurosciences, 2018, 88, 231-239.	1.0	9
15	Transplantation of Microglia in the Area of Spinal Cord Injury in an Acute Period Increases Tissue Sparing, but Not Functional Recovery. Frontiers in Cellular Neuroscience, 2018, 12, 507.	1.8	21
16	Allogenic Adipose Derived Stem Cells Transplantation Improved Sciatic Nerve Regeneration in Rats: Autologous Nerve Graft Model. Frontiers in Pharmacology, 2018, 9, 86.	1.6	22
17	Adipose-Derived Mesenchymal Stem Cell Application Combined With Fibrin Matrix Promotes Structural and Functional Recovery Following Spinal Cord Injury in Rats. Frontiers in Pharmacology, 2018, 9, 343.	1.6	50
18	Influence of Genetically Modified Human Umbilical Cord Blood Mononuclear Cells on the Expression of Schwann Cell Molecular Determinants in Spinal Cord Injury. Stem Cells International, 2018, 2018, 1-11	1.2	8

Yana Mukhamedshina

#	Article	IF	CITATIONS
19	Surgical Procedure for Extracting Pig Teeth for Isolation and Cultivation of Mesenchymal Stem Cells from Dental Pulp for Regenerative Therapy Applications. BioNanoScience, 2017, 7, 101-105.	1.5	1
20	Human Umbilical Cord Blood Cell Transplantation in Neuroregenerative Strategies. Frontiers in Pharmacology, 2017, 8, 628.	1.6	27
21	Systemic and Local Cytokine Profile following Spinal Cord Injury in Rats: A Multiplex Analysis. Frontiers in Neurology, 2017, 8, 581.	1.1	51
22	Electrophysiological, Morphological, and Ultrastructural Features of the Injured Spinal Cord Tissue after Transplantation of Human Umbilical Cord Blood Mononuclear Cells Genetically Modified with the VEGF and GDNF Genes. Neural Plasticity, 2017, 2017, 1-12.	1.0	17
23	Paramagnetic Manganese in the Atherosclerotic Plaque of Carotid Arteries. BioMed Research International, 2016, 2016, 1-7.	0.9	17
24	Assessment of Glial Scar, Tissue Sparing, Behavioral Recovery and Axonal Regeneration following Acute Transplantation of Genetically Modified Human Umbilical Cord Blood Cells in a Rat Model of Spinal Cord Contusion. PLoS ONE, 2016, 11, e0151745.	1.1	28
25	Effect of GDNF on Morphology, Proliferation, and Phagocytic Activity of Rat Neonatal Cortex Isolated Microglia. BioNanoScience, 2016, 6, 379-383.	1.5	4
26	Human adipose-derived stem cells stimulate neuroregeneration. Clinical and Experimental Medicine, 2016, 16, 451-461.	1.9	31
27	Genetically modified human umbilical cord blood cells as a promising strategy for treatment of spinal cord injury. Neural Regeneration Research, 2016, 11, 1420.	1.6	2
28	Symptomatic Improvement, Increased Life-Span and Sustained Cell Homing in Amyotrophic Lateral Sclerosis After Transplantation of Human Umbilical Cord Blood Cells Genetically Modified with Adeno-Viral Vectors Expressing a Neuro-Protective Factor and a Neural Cell Adhesion Molecule. Current Gene Therapy, 2015, 15, 266-276.	0.9	40