
Martina Gentzsch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6909923/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Treatment of cystic fibrosis airway cells with CFTR modulators reverses aberrant mucus properties <i>via</i> hydration. European Respiratory Journal, 2022, 59, 2100185.	3.1	36
2	A PI3KÎ ³ mimetic peptide triggers CFTR gating, bronchodilation, and reduced inflammation in obstructive airway diseases. Science Translational Medicine, 2022, 14, eabl6328.	5.8	6
3	Established and novel human translational models to advance cystic fibrosis research, drug discovery, and optimize CFTR-targeting therapeutics. Current Opinion in Pharmacology, 2022, 64, 102210.	1.7	6
4	Secretory Cells Dominate Airway CFTR Expression and Function in Human Airway Superficial Epithelia. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 1275-1289.	2.5	110
5	Airway Epithelial Inflammation In Vitro Augments the Rescue of Mutant CFTR by Current CFTR Modulator Therapies. Frontiers in Pharmacology, 2021, 12, 628722.	1.6	20
6	DNAJB12 and Hsp70 triage arrested intermediates of N1303K-CFTR for endoplasmic reticulum-associated autophagy. Molecular Biology of the Cell, 2021, 32, 538-553.	0.9	32
7	Enhanced delivery of peptide-morpholino oligonucleotides with a small molecule to correct splicing defects in the lung. Nucleic Acids Research, 2021, 49, 6100-6113.	6.5	13
8	Phenotypes of CF rabbits generated by CRISPR/Cas9-mediated disruption of the CFTR gene. JCI Insight, 2021, 6, .	2.3	20
9	Impact of Airway Inflammation on the Efficacy of CFTR Modulators. Cells, 2021, 10, 3260.	1.8	10
10	Revisiting CFTR Interactions: Old Partners and New Players. International Journal of Molecular Sciences, 2021, 22, 13196.	1.8	11
11	Accumulation and persistence of ivacaftor in airway epithelia with prolonged treatment. Journal of Cystic Fibrosis, 2020, 19, 746-751.	0.3	9
12	Personalised medicine for non-classic cystic fibrosis resulting from rare CFTR mutations. European Respiratory Journal, 2020, 56, 2000062.	3.1	10
13	A Pathophysiological Model for COVID-19: Critical Importance of Transepithelial Sodium Transport upon Airway Infection. Function, 2020, 1, zqaa024.	1.1	24
14	CFTR modulator theratyping: Current status, gaps and future directions. Journal of Cystic Fibrosis, 2019, 18, 22-34.	0.3	208
15	Bioactive Thymosin Alpha-1 Does Not Influence F508del-CFTR Maturation and Activity. Scientific Reports, 2019, 9, 10310.	1.6	8
16	Recent progress in translational cystic fibrosis research using precision medicine strategies. Journal of Cystic Fibrosis, 2018, 17, S52-S60.	0.3	37
17	The cystic fibrosis airway milieu enhances rescue of F508del in a pre-clinical model. European Respiratory Journal, 2018, 52, 1801133.	3.1	15
18	The N terminus of α-ENaC mediates ENaC cleavage and activation by furin. Journal of General Physiology, 2018, 150, 1179-1187.	0.9	9

#	Article	IF	CITATIONS
19	Generation of renewable mouse intestinal epithelial cell monolayers and organoids for functional analyses. BMC Cell Biology, 2018, 19, 15.	3.0	35
20	Ion Channel Modulators in Cystic Fibrosis. Chest, 2018, 154, 383-393.	0.4	128
21	Thymosin $\hat{I}\pm -1$ does not correct F508del-CFTR in cystic fibrosis airway epithelia. JCI Insight, 2018, 3, .	2.3	23
22	Pharmacological Rescue of Conditionally Reprogrammed Cystic Fibrosis Bronchial Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 568-574.	1.4	133
23	Nasospheroids permit measurements of CFTR-dependent fluid transport. JCI Insight, 2017, 2, .	2.3	40
24	Restoration of R117H CFTR folding and function in human airway cells through combination treatment with VX-809 and VX-770. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 311, L550-L559.	1.3	42
25	Efficacy of lumacaftor-ivacaftor for the treatment of cystic fibrosis patients homozygous for the F508del-CFTR mutation. Expert Review of Precision Medicine and Drug Development, 2016, 1, 235-243.	0.4	34
26	The N-terminal Domain Allosterically Regulates Cleavage and Activation of the Epithelial Sodium Channel. Journal of Biological Chemistry, 2014, 289, 23029-23042.	1.6	12
27	Potentiator ivacaftor abrogates pharmacological correction of ΔF508 CFTR in cystic fibrosis. Science Translational Medicine, 2014, 6, 246ra96.	5.8	279
28	Energetic and Structural Basis for Activation of the Epithelial Sodium Channel by Matriptase. Biochemistry, 2012, 51, 3460-3469.	1.2	24
29	Cigarette smoke exposure induces CFTR internalization and insolubility, leading to airway surface liquid dehydration. FASEB Journal, 2012, 26, 533-545.	0.2	221
30	Allosteric Modulation Balances Thermodynamic Stability and Restores Function of ΔF508 CFTR. Journal of Molecular Biology, 2012, 419, 41-60.	2.0	90
31	Imaging CFTR Protein Localization in Cultured Cells and Tissues. Methods in Molecular Biology, 2011, 742, 15-33.	0.4	12
32	AAV Exploits Subcellular Stress Associated with Inflammation, Endoplasmic Reticulum Expansion, and Misfolded Proteins in Models of Cystic Fibrosis. PLoS Pathogens, 2011, 7, e1002053.	2.1	40
33	Reduced histone deacetylase 7 activity restores function to misfolded CFTR in cystic fibrosis. Nature Chemical Biology, 2010, 6, 25-33.	3.9	237
34	The Cystic Fibrosis Transmembrane Conductance Regulator Impedes Proteolytic Stimulation of the Epithelial Na+ Channel. Journal of Biological Chemistry, 2010, 285, 32227-32232.	1.6	89
35	Modulation of endocytic trafficking and apical stability of CFTR in primary human airway epithelial cultures. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 298, L304-L314.	1.3	72
36	Regulatory Insertion Removal Restores Maturation, Stability and Function of ΔF508 CFTR. Journal of Molecular Biology, 2010, 401, 194-210.	2.0	105

MARTINA GENTZSCH

#	Article	IF	CITATIONS
37	An Expanded Biological Repertoire for Ins(3,4,5,6)P4 through its Modulation of CIC-3 Function. Current Biology, 2008, 18, 1600-1605.	1.8	35
38	Role of N-linked oligosaccharides in the biosynthetic processing of the cystic fibrosis membrane conductance regulator. Journal of Cell Science, 2008, 121, 2814-2823.	1.2	73
39	Misassembled mutant ΔF508 CFTR in the distal secretory pathway alters cellular lipid trafficking. Journal of Cell Science, 2007, 120, 447-455.	1.2	62
40	Domain Interdependence in the Biosynthetic Assembly of CFTR. Journal of Molecular Biology, 2007, 365, 981-994.	2.0	204
41	Direct interaction with filamins modulates the stability and plasma membrane expression of CFTR. Journal of Clinical Investigation, 2007, 117, 364-374.	3.9	85
42	F508del CFTR with two altered RXR motifs escapes from ER quality control but its channel activity is thermally sensitive. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 565-572.	1.4	51
43	The role of cystic fibrosis transmembrane conductance regulator phenylalanine 508 side chain in ion channel gating. Journal of Physiology, 2006, 572, 347-358.	1.3	59
44	SERCA Pump Inhibitors Do Not Correct Biosynthetic Arrest of ΔF508 CFTR in Cystic Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2006, 34, 355-363.	1.4	52
45	Misassembled mutant CFTR in the distal secretory pathway alters cellular lipid trafficking. FASEB Journal, 2006, 20, A84.	0.2	0
46	Bcr (breakpoint cluster region) protein binds to PDZ-domains of scaffold protein PDZK1 and vesicle coat protein Mint3. Journal of Cell Science, 2004, 117, 5535-5541.	1.2	22
47	Endocytic Trafficking Routes of Wild Type and ΔF508 Cystic Fibrosis Transmembrane Conductance Regulator. Molecular Biology of the Cell, 2004, 15, 2684-2696.	0.9	195
48	The PDZ-binding Chloride Channel ClC-3B Localizes to the Golgi and Associates with Cystic Fibrosis Transmembrane Conductance Regulator-interacting PDZ Proteins. Journal of Biological Chemistry, 2003, 278, 6440-6449.	1.6	124
49	Expression and Degradation of the Cystic Fibrosis Transmembrane Conductance Regulator in Saccharomyces cerevisiae. Archives of Biochemistry and Biophysics, 2001, 390, 195-205.	1.4	39
50	Early life of cystic fibrosis transmembrane conductance regulator (CFTR) in the cell. Kidney International, 2001, 60, 401.	2.6	0
51	Localization of Sequences within the C-terminal Domain of the Cystic Fibrosis Transmembrane Conductance Regulator Which Impact Maturation and Stability. Journal of Biological Chemistry, 2001, 276, 1291-1298.	1.6	39
52	O-Glycosylation of Axl2/Bud10p by Pmt4p Is Required for Its Stability, Localization, and Function in Daughter Cells. Journal of Cell Biology, 1999, 145, 1177-1188.	2.3	65
53	Protein-O-glycosylation in yeast: protein-specific mannosyltransferases. Glycobiology, 1997, 7, 481-486.	1.3	152
54	Specific Labelling of Cell Wall Proteins by Biotinylation. Identification of Four Covalently Linked		189

O-mannosylated Proteins of Saccharomyces cerevisiae. , 1997, 13, 1145-1154.

189

MARTINA GENTZSCH

#	Article	IF	CITATIONS
55	PMT3 andPMT4, two new members of the protein-O-mannosyltransferase gene family ofSaccharomyces cerevisiae. Yeast, 1995, 11, 1345-1351.	0.8	60
56	Protein O-Glycosylation in Yeast. Journal of Biological Chemistry, 1995, 270, 2770-2775.	1.6	88
57	A new Dol-P-Man:protein O-D-mannosyltransferase activity from Saccharomyces cerevisiae. Glycobiology, 1995, 5, 77-82.	1.3	22
58	ProteinO-glycosylation inSaccharomyces cerevisiae: the proteinO-mannosyltransferases Pmt1p and Pmt2p function as heterodimer. FEBS Letters, 1995, 377, 128-130.	1.3	49