
Jeremy S Dasen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6909840/publications.pdf

Version: 2024-02-01

IEDEMY S DASEN

#	Article	IF	CITATIONS
1	Pituitary lineage determination by the Prophet of Pit-1 homeodomain factor defective in Ames dwarfism. Nature, 1996, 384, 327-333.	13.7	748
2	Mutations in PROP1 cause familial combined pituitary hormone deficiency. Nature Genetics, 1998, 18, 147-149.	9.4	531
3	A Hox Regulatory Network Establishes Motor Neuron Pool Identity and Target-Muscle Connectivity. Cell, 2005, 123, 477-491.	13.5	405
4	Hox Genes: Choreographers in Neural Development, Architects of Circuit Organization. Neuron, 2013, 80, 12-34.	3.8	349
5	Motor neuron columnar fate imposed by sequential phases of Hox-c activity. Nature, 2003, 425, 926-933.	13.7	327
6	Hox Repertoires for Motor Neuron Diversity and Connectivity Gated by a Single Accessory Factor, FoxP1. Cell, 2008, 134, 304-316.	13.5	326
7	Signal-specific co-activator domain requirements for Pit-1 activation. Nature, 1998, 395, 301-306.	13.7	273
8	Chapter Six Hox Networks and the Origins of Motor Neuron Diversity. Current Topics in Developmental Biology, 2009, 88, 169-200.	1.0	273
9	Signaling and Transcriptional Mechanisms in Pituitary Development. Annual Review of Neuroscience, 2001, 24, 327-355.	5.0	190
10	Global Control of Motor Neuron Topography Mediated by the Repressive Actions of a Single Hox Gene. Neuron, 2010, 67, 781-796.	3.8	125
11	Functional Diversity of ESC-Derived Motor Neuron Subtypes Revealed through Intraspinal Transplantation. Cell Stem Cell, 2010, 7, 355-366.	5.2	121
12	Sustained Hox5 gene activity is required for respiratory motor neuron development. Nature Neuroscience, 2012, 15, 1636-1644.	7.1	107
13	Origin and Segmental Diversity of Spinal Inhibitory Interneurons. Neuron, 2018, 97, 341-355.e3.	3.8	86
14	The Ancient Origins of Neural Substrates for Land Walking. Cell, 2018, 172, 667-682.e15.	13.5	76
15	Assembly and Function of Spinal Circuits for Motor Control. Annual Review of Cell and Developmental Biology, 2015, 31, 669-698.	4.0	72
16	Hox Proteins Coordinate Motor Neuron Differentiation and Connectivity Programs through Ret/Gfrα Genes. Cell Reports, 2016, 14, 1901-1915.	2.9	65
17	Genetic and Functional Modularity of Hox Activities in the Specification of Limb-Innervating Motor Neurons. PLoS Genetics, 2013, 9, e1003184.	1.5	64
18	Evolving Hox Activity Profiles Govern Diversity in Locomotor Systems. Developmental Cell, 2014, 29, 171-187.	3.1	56

JEREMY S DASEN

#	Article	IF	CITATIONS
19	Divergent Hox Coding and Evasion of Retinoid Signaling Specifies Motor Neurons Innervating Digit Muscles. Neuron, 2017, 93, 792-805.e4.	3.8	50
20	Long Noncoding RNAs in Development: Solidifying the Lncs to Hox Gene Regulation. Cell Reports, 2013, 5, 1-2.	2.9	45
21	Chapter 4 Transcriptional Networks in the Early Development of Sensory–Motor Circuits. Current Topics in Developmental Biology, 2009, 87, 119-148.	1.0	43
22	Evolution of Patterning Systems and Circuit Elements for Locomotion. Developmental Cell, 2015, 32, 408-422.	3.1	37
23	Molecular Logic of Spinocerebellar Tract Neuron Diversity and Connectivity. Cell Reports, 2019, 27, 2620-2635.e4.	2.9	36
24	Parallel Pbx -Dependent Pathways Govern the Coalescence and Fate of Motor Columns. Neuron, 2016, 91, 1005-1020.	3.8	35
25	Differential abilities to engage inaccessible chromatin diversify vertebrate HOX binding patterns. Development (Cambridge), 2020, 147, .	1.2	34
26	Polycomb repressive complex 1 activities determine the columnar organization of motor neurons. Genes and Development, 2012, 26, 2236-2250.	2.7	33
27	Columnar-Intrinsic Cues Shape Premotor Input Specificity in Locomotor Circuits. Cell Reports, 2017, 21, 867-877.	2.9	32
28	Development, functional organization, and evolution of vertebrate axial motor circuits. Neural Development, 2018, 13, 10.	1.1	28
29	Intrinsic control of neuronal diversity and synaptic specificity in a proprioceptive circuit. ELife, 2020, 9, .	2.8	23
30	Master or servant? emerging roles for motor neuron subtypes in the construction and evolution of locomotor circuits. Current Opinion in Neurobiology, 2017, 42, 25-32.	2.0	18
31	HOXA5 plays tissue-specific roles in the developing respiratory system. Development (Cambridge), 2017, 144, 3547-3561.	1.2	15
32	PRC1 sustains the integrity of neural fate in the absence of PRC2 function. ELife, 2022, 11, .	2.8	15
33	Evolution of Locomotor Rhythms. Trends in Neurosciences, 2018, 41, 648-651.	4.2	8
34	Big insight from the little skate: Leucoraja erinacea as a developmental model system. Current Topics in Developmental Biology, 2022, 147, 595-630.	1.0	4
35	Topographic Maps: Motor Axons Wait Their Turn. Current Biology, 2018, 28, R86-R88.	1.8	3
36	Sensory-Motor Circuits: Hox Genes Get in Touch. Neuron, 2015, 88, 437-440.	3.8	2

#	Article	IF	CITATIONS
37	De Novo DNA Methylation: Marking the Path from Stem Cell to Neural Fate. Cell Stem Cell, 2018, 22, 469-471.	5.2	2