Lorenza Lazzari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6909631/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ageâ€related changes in the energy of human mesenchymal stem cells. Journal of Cellular Physiology, 2022, 237, 1753-1767.	2.0	10
2	Process development and validation of expanded regulatory T cells for prospective applications: an example of manufacturing a personalized advanced therapy medicinal product. Journal of Translational Medicine, 2022, 20, 14.	1.8	4
3	Validation of an automated cell counting method for cGMP manufacturing of human induced pluripotent stem cells. Biotechnology Reports (Amsterdam, Netherlands), 2022, 33, e00708.	2.1	2
4	A comprehensive report of long-term stability data for a range ATMPs: A need to develop guidelines for safe and harmonized stability studies. Cytotherapy, 2022, 24, 544-556.	0.3	7
5	Human airway organoids and microplastic fibers: A new exposure model for emerging contaminants. Environment International, 2022, 163, 107200.	4.8	25
6	A flow cytometric assay for the quantification of MSC lysis by peripheral blood mononucleated cells. Heliyon, 2021, 7, e06036.	1.4	0
7	Chondrogenic and BMP-4 primings confer osteogenesis potential to human cord blood mesenchymal stromal cells delivered with biphasic calcium phosphate ceramics. Scientific Reports, 2021, 11, 6751.	1.6	4
8	Safety and Effectiveness of Cell Therapy in Neurodegenerative Diseases: Take-Home Messages From a Pilot Feasibility Phase I Study of Progressive Supranuclear Palsy. Frontiers in Neuroscience, 2021, 15, 723227.	1.4	1
9	Critical Analysis of cGMP Large-Scale Expansion Process in Bioreactors of Human Induced Pluripotent Stem Cells in the Framework of Quality by Design. BioDrugs, 2021, 35, 693-714.	2.2	7
10	Identification of the best housekeeping gene for RT-qPCR analysis of human pancreatic organoids. PLoS ONE, 2021, 16, e0260902.	1.1	4
11	Blood-derived extracellular vesicles isolated from healthy donors exposed to air pollution modulate in vitro endothelial cells behavior. Scientific Reports, 2020, 10, 20138.	1.6	11
12	Standardized GMP-compliant scalable production of human pancreas organoids. Stem Cell Research and Therapy, 2020, 11, 94.	2.4	34
13	A circular RNA map for human induced pluripotent stem cells of foetal origin. EBioMedicine, 2020, 57, 102848.	2.7	9
14	Mesenchymal stromal cells and their secreted extracellular vesicles as therapeutic tools for COVID-19 pneumonia?. Journal of Controlled Release, 2020, 325, 135-140.	4.8	28
15	Central metabolism of functionally heterogeneous mesenchymal stromal cells. Scientific Reports, 2019, 9, 15420.	1.6	10
16	Generation of a Functioning and Self-Renewing Diaphragmatic Muscle Construct. Stem Cells Translational Medicine, 2019, 8, 858-869.	1.6	27
17	FOXP1 circular RNA sustains mesenchymal stem cell identity via microRNA inhibition. Nucleic Acids Research, 2019, 47, 5325-5340.	6.5	78
18	FGF23 and Fetuin-A Interaction and Mesenchymal Osteogenic Transformation. International Journal of Molecular Sciences, 2019, 20, 915.	1.8	2

#	Article	IF	CITATIONS
19	NG2 as an Identity and Quality Marker of Mesenchymal Stem Cell Extracellular Vesicles. Cells, 2019, 8, 1524.	1.8	18
20	Microtubule defects in mesenchymal stromal cells distinguish patients with Progressive Supranuclear Palsy. Journal of Cellular and Molecular Medicine, 2018, 22, 2670-2679.	1.6	8
21	Mesenchymal stem cells encapsulated into biomimetic hydrogel scaffold gradually release CCL2 chemokine in situ preserving cytoarchitecture and promoting functional recovery in spinal cord injury. Journal of Controlled Release, 2018, 278, 49-56.	4.8	80
22	Mitochondrial dysfunction in Parkinsonian mesenchymal stem cells impairs differentiation. Redox Biology, 2018, 14, 474-484.	3.9	104
23	Lung transplantation, ex-vivo reconditioning and regeneration: state of the art and perspectives. Journal of Thoracic Disease, 2018, 10, S2423-S2430.	0.6	18
24	Tips and Tricks for Validation of Quality Control Analytical Methods in Good Manufacturing Practice Mesenchymal Stromal Cell Production. Stem Cells International, 2018, 2018, 1-16.	1.2	23
25	FGF23 and Fetuin-A Interaction in the Liver and in the Circulation. International Journal of Biological Sciences, 2018, 14, 586-598.	2.6	15
26	Manufacturing Mesenchymal Stromal Cells for the Treatment of Graft-versus-Host Disease: A Survey among Centers Affiliated with the European Society for Blood and Marrow Transplantation. Biology of Blood and Marrow Transplantation, 2018, 24, 2365-2370.	2.0	61
27	Low-affinity Nerve Growth Factor Receptor (CD271) Heterogeneous Expression in Adult and Fetal Mesenchymal Stromal Cells. Scientific Reports, 2018, 8, 9321.	1.6	55
28	Extracellular Vesicle-Shuttled mRNA in Mesenchymal Stem Cell Communication. Stem Cells, 2017, 35, 1093-1105.	1.4	95
29	Clinically relevant hydrogelâ€based on hyaluronic acid and platelet rich plasma as a carrier for mesenchymal stem cells: Rheological and biological characterization. Journal of Orthopaedic Research, 2017, 35, 2109-2116.	1.2	35
30	Intravenous infusion of human bone marrow mesenchymal stromal cells promotes functional recovery and neuroplasticity after ischemic stroke in mice. Scientific Reports, 2017, 7, 6962.	1.6	36
31	Challenges of running a GMP facility for regenerative medicine in a public hospital. Regenerative Medicine, 2017, 12, 803-813.	0.8	20
32	Angiogenic and anti-inflammatory properties of mesenchymal stem cells from cord blood: soluble factors and extracellular vesicles for cell regeneration. European Journal of Cell Biology, 2016, 95, 228-238.	1.6	37
33	A Chemically Defined Medium-Based Strategy to Efficiently Generate Clinically Relevant Cord Blood Mesenchymal Stromal Colonies. Cell Transplantation, 2016, 25, 1501-1514.	1.2	12
34	Finding a new therapeutic approach for no-option Parkinsonisms: mesenchymal stromal cells for progressive supranuclear palsy. Journal of Translational Medicine, 2016, 14, 127.	1.8	41
35	Hydroquinone induces DNA hypomethylation-independent overexpression of retroelements in human leukemia and hematopoietic stem cells. Biochemical and Biophysical Research Communications, 2016, 474, 691-695.	1.0	15
36	Three-dimensional podocyte–endothelial cell co-cultures: Assembly, validation, and application to drug testing and intercellular signaling studies. European Journal of Pharmaceutical Sciences, 2016, 86, 1-12.	1.9	30

#	Article	IF	CITATIONS
37	A new three dimensional biomimetic hydrogel to deliver factors secreted by human mesenchymal stem cells in spinal cord injury. Biomaterials, 2016, 75, 135-147.	5.7	141
38	Protein O-mannosylation is crucial for human mesencyhmal stem cells fate. Cellular and Molecular Life Sciences, 2016, 73, 445-458.	2.4	9
39	Human cord blood-derived platelet lysate enhances the therapeutic activity of adipose-derived mesenchymal stromal cells isolated from Crohn's disease patients in a mouse model of colitis. Stem Cell Research and Therapy, 2015, 6, 170.	2.4	26
40	Extensive Characterization of Platelet Gel Releasate from Cord Blood in Regenerative Medicine. Cell Transplantation, 2015, 24, 2573-2584.	1.2	30
41	How we make cell therapy in Italy. Drug Design, Development and Therapy, 2015, 9, 4825.	2.0	9
42	How far are we from the clinical use of placental-derived mesenchymal stem cells?. Expert Opinion on Biological Therapy, 2015, 15, 613-617.	1.4	24
43	Airway Fistula Closure after Stem-Cell Infusion. New England Journal of Medicine, 2015, 372, 96-97.	13.9	52
44	Dissection of the Cord Blood Stromal Component Reveals Predictive Parameters for Culture Outcome. Stem Cells and Development, 2015, 24, 104-114.	1.1	22
45	Defining the identity of human adipose-derived mesenchymal stem cells. Biochemistry and Cell Biology, 2015, 93, 74-82.	0.9	15
46	Autologous mesenchymal stem cell therapy for progressive supranuclear palsy: translation into a phase I controlled, randomized clinical study. Journal of Translational Medicine, 2014, 12, 14.	1.8	30
47	Natural history of mesenchymal stem cells, from vessel walls to culture vessels. Cellular and Molecular Life Sciences, 2014, 71, 1353-1374.	2.4	231
48	Diet composition transiently modulates proliferative and potency features of human cord blood-derived mesenchymal stem cells. International Journal of Biochemistry and Cell Biology, 2014, 55, 269-278.	1.2	5
49	Assessing cytokines' talking patterns following experimental myocardial damage by applying Shannon's information theory. Journal of Theoretical Biology, 2014, 343, 25-31.	0.8	5
50	Pleural tissue repair with cord blood platelet gel. Blood Transfusion, 2014, 12 Suppl 1, s235-42.	0.3	3
51	Short-term, long-term and paracrine effect of human umbilical cord-derived stem cells in lung injury prevention and repair in experimental bronchopulmonary dysplasia. Thorax, 2013, 68, 475-484.	2.7	217
52	Perivascular support of human hematopoietic stem/progenitor cells. Blood, 2013, 121, 2891-2901.	0.6	167
53	Adipogenic potential in human mesenchymal stem cells strictly depends on adult or foetal tissue harvest. International Journal of Biochemistry and Cell Biology, 2013, 45, 2456-2466.	1.2	37
54	Allogeneic mesenchymal stem cell infusion for the stabilization ofÂfocal segmental glomerulosclerosis. Biologicals, 2013, 41, 439-445.	0.5	27

#	Article	IF	CITATIONS
55	What is beyond a q <scp>RT</scp> â€ <scp>PCR</scp> study on mesenchymal stem cell differentiation properties: how to choose the most reliable housekeeping genes. Journal of Cellular and Molecular Medicine, 2013, 17, 168-180.	1.6	128
56	Differential microRNA signature of human mesenchymal stem cells from different sources reveals an "environmental-niche memory―for bone marrow stem cells. Experimental Cell Research, 2013, 319, 1562-1574.	1.2	45
5 7	Cellular Kinetics of Perivascular MSC Precursors. Stem Cells International, 2013, 2013, 1-18.	1.2	51
58	A novel method for banking dental pulp stem cells. Transfusion and Apheresis Science, 2012, 47, 199-206.	0.5	51
59	InÂVitro Evaluation of Graft-versus-Graft Alloreactivity as a Tool to Identify the Predominant Cord Blood Unit before Double Cord Blood Transplantation. Biology of Blood and Marrow Transplantation, 2012, 18, 1108-1118.	2.0	17
60	Changes in the proteomic profile of adipose tissue-derived mesenchymal stem cells during passages. Proteome Science, 2012, 10, 46.	0.7	22
61	Preâ€culturing human adipose tissue mesenchymal stem cells under hypoxia increases their adipogenic and osteogenic differentiation potentials. Cell Proliferation, 2012, 45, 225-238.	2.4	125
62	Intracerebroventricular Administration of Human Umbilical Cord Blood Cells Delays Disease Progression in Two Murine Models of Motor Neuron Degeneration. Rejuvenation Research, 2011, 14, 623-639.	0.9	44
63	Human umbilical cord blood mesenchymal stem cells protect mice brain after trauma*. Critical Care Medicine, 2011, 39, 2501-2510.	0.4	130
64	Differentiation and migration properties of human foetal umbilical cord perivascular cells: potential for lung repair. Journal of Cellular and Molecular Medicine, 2011, 15, 796-808.	1.6	60
65	Life-Sparing Effect of Human Cord Blood-Mesenchymal Stem Cells in Experimental Acute Kidney Injury. Stem Cells, 2010, 28, 513-522.	1.4	161
66	Role of Chk1 in the differentiation program of hematopoietic stem cells. Cellular and Molecular Life Sciences, 2010, 67, 1713-1722.	2.4	6
67	Perivascular Ancestors of Adult Multipotent Stem Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1104-1109.	1.1	279
68	Platelet gel from cord blood: A novel tool for tissue engineering. Platelets, 2010, 21, 549-554.	1.1	52
69	Cell Lines Derived from Human Parthenogenetic Embryos Can Display Aberrant Centriole Distribution and Altered Expression Levels of Mitotic Spindle Check-point Transcripts. Stem Cell Reviews and Reports, 2009, 5, 340-352.	5.6	40
70	Perivascular Multipotent Progenitor Cells in Human Organs. Annals of the New York Academy of Sciences, 2009, 1176, 118-123.	1.8	177
71	Perivascular multi-lineage progenitor cells in human organs: Regenerative units, cytokine sources or both?. Cytokine and Growth Factor Reviews, 2009, 20, 429-434.	3.2	148
72	High GATA-2 expression inhibits human hematopoietic stem and progenitor cell function by effects on cell cycle. Blood, 2009, 113, 2661-2672.	0.6	103

#	Article	IF	CITATIONS
73	Do mesenchymal stem cells play a role in vocal fold fat graft survival?. Cell Proliferation, 2008, 41, 460-473.	2.4	22
74	Development of a biological resource center for cellular therapy and biobanking in a public polyclinic university hospital. Biologicals, 2008, 36, 79-87.	0.5	10
75	Potential advantages of cell administration on the inflammatory response compared to standard ACE inhibitor treatment in experimental myocardial infarction. Journal of Translational Medicine, 2008, 6, 30.	1.8	14
76	A Perivascular Origin for Mesenchymal Stem Cells in Multiple Human Organs. Cell Stem Cell, 2008, 3, 301-313.	5.2	3,556
77	Purification and Longâ€Term Culture of Multipotent Progenitor Cells Affiliated with the Walls of Human Blood Vessels: Myoendothelial Cells and Pericytes. Methods in Cell Biology, 2008, 86, 295-309.	0.5	104
78	Molecular and phenotypical characterization of human amniotic fluid cells and their differentiation potential. Bio-Medical Materials and Engineering, 2008, 18, 183-185.	0.4	3
79	Molecular and phenotypical characterization of human amniotic fluid cells and their differentiation potential. Bio-Medical Materials and Engineering, 2008, 18, 183-5.	0.4	2
80	Oct-4 Expression in Adult Human Differentiated Cells Challenges Its Role as a Pure Stem Cell Marker. Stem Cells, 2007, 25, 1675-1680.	1.4	151
81	Circulating Endothelial Progenitor Cell Colony-Forming Capacity in Healthy Subjects: How Does an Endothelial Colony Look Like?. American Journal of Cardiology, 2007, 100, 559-560.	0.7	5
82	Assessment of Selective Homing and Contribution to Vessel Formation of Cryopreserved Peripherally Injected Bone Marrow Mononuclear Cells Following Experimental Myocardial Damage. Cardiovascular & Hematological Disorders Drug Targets, 2006, 6, 141-149.	0.2	4
83	Molecular and phenotypic characterization of human amniotic fluid cells and their differentiation potential. Cell Research, 2006, 16, 329-336.	5.7	175
84	Serial Transplantations in Nonobese Diabetic/Severe Combined Immunodeficiency Mice of Transduced Human CD34+Cord Blood Cells: Efficient Oncoretroviral Gene Transfer and Ex Vivo Expansion Under Serum-Free Conditions. Stem Cells, 2006, 24, 1201-1212.	1.4	8
85	Endothelial Colony Forming Capacity is Related to C-Reactive Protein Levels in Healthy Subjects. Current Neurovascular Research, 2006, 3, 99-106.	0.4	23
86	International Forum: 1. Vox Sanguinis, 2005, 89, 172-173.	0.7	0
87	High-Altitude trekking in the Himalayas increases the activity of circulating endothelial cells. American Journal of Hematology, 2005, 79, 76-78.	2.0	19
88	Transplantation of Ex Vivo Expanded Cord Blood Progenitor Cells: First Experience in Two Children Affected by Hemoglobinopathies Blood, 2005, 106, 2187-2187.	0.6	1
89	Clinical grade cell manipulation. Vox Sanguinis, 2004, 87, 65-72.	0.7	16
90	The translocation of marrow MNCs after experimental myocardial cryoinjury is proportional to the infarcted area. Transfusion, 2004, 44, 239-244.	0.8	4

#	Article	IF	CITATIONS
91	Clinical-grade cell purification from thawed cord blood: an example of translational research. Bone Marrow Transplantation, 2003, 32, 965-966.	1.3	6
92	Homing of peripherally injected bone marrow cells in rat after experimental myocardial injury. Haematologica, 2003, 88, 614-21.	1.7	18
93	International Forum. Vox Sanguinis, 2002, 83, 172-187.	0.7	6
94	Long-term expansion and maintenance of cord blood haematopoietic stem cells using thrombopoietin, Flt3-ligand, interleukin (IL)-6 and IL-11 in a serum-free and stroma-free culture system. British Journal of Haematology, 2001, 112, 397-404.	1.2	42
95	Comparison of different serum-free media for ex vivo expansion of HPCs from cord blood using thrombopoietin, Flt-3 ligand, IL-6, and IL-11. Transfusion, 2001, 41, 718-719.	0.8	15
96	Evaluation of the effect of cryopreservation on ex vivo expansion of hematopoietic progenitors from cord blood. Bone Marrow Transplantation, 2001, 28, 693-698.	1.3	20
97	Reasons for discard of umbilical cord blood units before cryopreservation. Transfusion, 2000, 40, 122-123.	0.8	25
98	Quality of Repopulation in Nonobese Diabetic Severe Combined Immunodeficient Mice Engrafted With Expanded Cord Blood CD34+ Cells. Blood, 1999, 94, 3269-3270.	0.6	14
99	The Milan Cord Blood Bank and the Italian Cord Blood Network. Stem Cells and Development, 1996, 5, 117-122.	1.0	41
100	Gene Transfer-Mediated Generation of Drug-Resistant Hemopoiesis. Leukemia and Lymphoma, 1996, 21, 17-23.	0.6	3
101	The effect of interleukin-12 in ex-vivo expansion of human haemopoietic progenitors. British Journal of Haematology, 1995, 90, 935-938.	1.2	12
102	Comparative Study of Different Procedures for the Collection and Banking of Umbilical Cord Blood. Stem Cells and Development, 1995, 4, 29-36.	1.0	76
103	Retrovirus-mediated transfer of the multidrug resistance gene into human haemopoietic progenitor cells. British Journal of Haematology, 1994, 88, 318-324.	1.2	39