
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6909543/publications.pdf Version: 2024-02-01

ΠΟΝΑ SINHA

#	Article	IF	CITATIONS
1	The Role of Resveratrol in Cancer Therapy. International Journal of Molecular Sciences, 2017, 18, 2589.	1.8	503
2	Cancer Prevention and Treatment with Resveratrol: From Rodent Studies to Clinical Trials. Cancer Prevention Research, 2009, 2, 409-418.	0.7	443
3	Triterpenoids as potential agents for the chemoprevention and therapy of breast cancer. Frontiers in Bioscience - Landmark, 2011, 16, 980.	3.0	265
4	Bioactive natural products in cancer prevention and therapy: Progress and promise. Seminars in Cancer Biology, 2016, 40-41, 1-3.	4.3	254
5	Curcumin and Liver Cancer: A Review. Current Pharmaceutical Biotechnology, 2012, 13, 218-228.	0.9	218
6	Resveratrol for breast cancer prevention and therapy: Preclinical evidence and molecular mechanisms. Seminars in Cancer Biology, 2016, 40-41, 209-232.	4.3	193
7	Cancer prevention and therapy through the modulation of transcription factors by bioactive natural compounds. Seminars in Cancer Biology, 2016, 40-41, 35-47.	4.3	178
8	Resveratrol in the chemoprevention and treatment of hepatocellular carcinoma. Cancer Treatment Reviews, 2010, 36, 43-53.	3.4	175
9	Molecular targets of curcumin for cancer therapy: an updated review. Tumor Biology, 2016, 37, 13017-13028.	0.8	157
10	Resveratrol Suppresses Oxidative Stress and Inflammatory Response in Diethylnitrosamine-Initiated Rat Hepatocarcinogenesis. Cancer Prevention Research, 2010, 3, 753-763.	0.7	144
11	Advances in phytochemical delivery systems for improved anticancer activity. Biotechnology Advances, 2020, 38, 107382.	6.0	136
12	Targeting the JAK/STAT Signaling Pathway Using Phytocompounds for Cancer Prevention and Therapy. Cells, 2020, 9, 1451.	1.8	109
13	Pomegranate-mediated chemoprevention of experimental hepatocarcinogenesis involves Nrf2-regulated antioxidant mechanisms. Carcinogenesis, 2011, 32, 888-896.	1.3	105
14	Targeting Multiple Signaling Pathways in Cancer: The Rutin Therapeutic Approach. Cancers, 2020, 12, 2276.	1.7	105
15	Chemopreventive and Chemotherapeutic Potential of Curcumin in Breast Cancer. Current Drug Targets, 2012, 13, 1799-1819.	1.0	102
16	Curcumin protects DNA damage in a chronically arsenic-exposed population of West Bengal. Human and Experimental Toxicology, 2010, 29, 513-524.	1.1	98
17	Oleanane triterpenoids in the prevention and therapy of breast cancer: current evidence and future perspectives. Phytochemistry Reviews, 2014, 13, 793-810.	3.1	98
18	Molecular mechanisms of action of epigallocatechin gallate in cancer: Recent trends and advancement. Seminars in Cancer Biology, 2022, 80, 256-275.	4.3	96

#	Article	IF	CITATIONS
19	Health effects inflicted by chronic lowâ€level arsenic contamination in groundwater: A global public health challenge. Journal of Applied Toxicology, 2020, 40, 87-131.	1.4	84
20	Resveratrol and liver disease: from bench to bedside and community. Liver International, 2010, 30, 1103-1114.	1.9	81
21	Anticancer potential of garlic and its bioactive constituents: A systematic and comprehensive review. Seminars in Cancer Biology, 2021, 73, 219-264.	4.3	73
22	Nrf2-mediated redox signaling in arsenic carcinogenesis: a review. Archives of Toxicology, 2013, 87, 383-396.	1.9	72
23	Sulforaphane: A Broccoli Bioactive Phytocompound with Cancer Preventive Potential. Cancers, 2021, 13, 4796.	1.7	71
24	Trends in Research on Exosomes in Cancer Progression and Anticancer Therapy. Cancers, 2021, 13, 326.	1.7	68
25	Chronic low level arsenic exposure evokes inflammatory responses and DNA damage. International Journal of Hygiene and Environmental Health, 2015, 218, 564-574.	2.1	62
26	Modulation of angiogenesis by dietary phytoconstituents in the prevention and intervention of breast cancer. Molecular Nutrition and Food Research, 2012, 56, 14-29.	1.5	55
27	Anti-Inflammatory Mechanism Involved in Pomegranate-Mediated Prevention of Breast Cancer: the Role of NF-κB and Nrf2 Signaling Pathways. Nutrients, 2017, 9, 436.	1.7	54
28	Emerging Concepts of Hybrid Epithelial-to-Mesenchymal Transition in Cancer Progression. Biomolecules, 2020, 10, 1561.	1.8	54
29	Modulation of dysregulated cancer metabolism by plant secondary metabolites: A mechanistic review. Seminars in Cancer Biology, 2022, 80, 276-305.	4.3	53
30	Pomegranate exerts chemoprevention of experimentally induced mammary tumorigenesis by suppression of cell proliferation and induction of apoptosis. Nutrition and Cancer, 2016, 68, 120-130.	0.9	50
31	Curcumin prevents DNA damage and enhances the repair potential in a chronically arsenic-exposed human population in West Bengal, India. European Journal of Cancer Prevention, 2011, 20, 123-131.	0.6	46
32	Green tea and the risk of gastric cancer: Epidemiological evidence. World Journal of Gastroenterology, 2013, 19, 3713.	1.4	46
33	Targeting the crosstalk between canonical Wnt/β-catenin and inflammatory signaling cascades: A novel strategy for cancer prevention and therapy. , 2021, 227, 107876.		41
34	Mechanism of Breast Cancer Preventive Action of Pomegranate: Disruption of Estrogen Receptor and Wnt/β-Catenin Signaling Pathways. Molecules, 2015, 20, 22315-22328.	1.7	40
35	Low-level arsenic causes chronic inflammation and suppresses expression of phagocytic receptors. Environmental Science and Pollution Research, 2017, 24, 11708-11721.	2.7	36
36	Chronic low-level arsenic exposure reduces lung function in male population without skin lesions. International Journal of Public Health, 2014, 59, 655-663.	1.0	35

#	Article	IF	CITATIONS
37	Curcumin and Melanoma: From Chemistry to Medicine. Nutrition and Cancer, 2018, 70, 164-175.	0.9	35
38	Cirsiliol Suppressed Epithelial to Mesenchymal Transition in B16F10 Malignant Melanoma Cells through Alteration of the PI3K/Akt/NF-κB Signaling Pathway. International Journal of Molecular Sciences, 2019, 20, 608.	1.8	30
39	Tea phytochemicals for breast cancer prevention and intervention: From bench to bedside and beyond. Seminars in Cancer Biology, 2017, 46, 33-54.	4.3	29
40	Antagonistic Role of Tea Against Sodium Arsenite-Induced Oxidative DNA Damage and Inhibition of DNA Repair in Swiss Albino Mice. Journal of Environmental Pathology, Toxicology and Oncology, 2011, 30, 311-322.	0.6	28
41	Trianthema portulacastrum Linn. Displays Anti-Inflammatory Responses during Chemically Induced Rat Mammary Tumorigenesis through Simultaneous and Differential Regulation of NF-I®B and Nrf2 Signaling Pathways. International Journal of Molecular Sciences, 2015, 16, 2426-2445.	1.8	27
42	Platelet hyperactivity, neurobehavioral symptoms and depression among Indian women chronically exposed to low level of arsenic. NeuroToxicology, 2014, 45, 159-167.	1.4	25
43	Molecular mechanisms linking environmental toxicants to cancer development: Significance for protective interventions with polyphenols. Seminars in Cancer Biology, 2022, 80, 118-144.	4.3	24
44	Crateva adansonii DC, an African ethnomedicinal plant, exerts cytotoxicity in vitro and prevents experimental mammary tumorigenesis in vivo. Journal of Ethnopharmacology, 2016, 190, 183-199.	2.0	23
45	Dietary phytochemicals in the regulation of epithelial to mesenchymal transition and associated enzymes: A promising anticancer therapeutic approach. Seminars in Cancer Biology, 2019, 56, 196-218.	4.3	23
46	Diallyl disulphide suppresses the cannonical Wnt signaling pathway and reverses the fibronectin-induced epithelial mesenchymal transition of A549 lung cancer cells. Food and Function, 2019, 10, 191-202.	2.1	19
47	Trianthema portulacastrum Linn. exerts chemoprevention of 7,12-dimethylbenz(a)anthracene-induced mammary tumorigenesis in rats. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2014, 768, 107-118.	0.4	17
48	In Vitro Mitigation of Arsenic Toxicity by Tea Polyphenols in Human Lymphocytes. Journal of Environmental Pathology, Toxicology and Oncology, 2007, 26, 207-220.	0.6	17
49	Arsenic-Induced Micronuclei Formation in Mammalian Cells and Its Counteraction by Tea. Journal of Environmental Pathology, Toxicology and Oncology, 2005, 24, 45-56.	0.6	16
50	EGCG maintained Nrf2-mediated redox homeostasis and minimized etoposide resistance in lung cancer cells. Journal of Functional Foods, 2019, 62, 103553.	1.6	15
51	Effect of low- and high-level groundwater arsenic on peripheral blood and lung function of exposed rural women. Regulatory Toxicology and Pharmacology, 2020, 115, 104684.	1.3	13
52	Arsenal of Phytochemicals to Combat Against Arsenic-Induced Mitochondrial Stress and Cancer. Antioxidants and Redox Signaling, 2020, 33, 1230-1256.	2.5	12
53	Indian spice curcumin may be an effective strategy to combat the genotoxicity of arsenic in Swiss albino mice. Asian Pacific Journal of Cancer Prevention, 2010, 11, 239-47.	0.5	12
54	Suppression of inflammatory cascade is implicated in methyl amooraninâ€mediated inhibition of experimental mammary carcinogenesis. Molecular Carcinogenesis, 2014, 53, 999-1010.	1.3	11

#	Article	IF	CITATIONS
55	Amelioration of Sodium Arsenite-Induced Clastogenicity by Tea Extracts in Chinese Hamster V79 Cells. Journal of Environmental Pathology, Toxicology and Oncology, 2005, 24, 129-140.	0.6	10
56	Epigallocatechinâ€3â€gallate partially restored redox homeostasis in arseniteâ€stressed keratinocytes. Journal of Applied Toxicology, 2018, 38, 1071-1080.	1.4	9
57	Low dose epigallocatechinâ€3â€gallate revives doxorubicin responsiveness by a redoxâ€sensitive pathway in A549 lung adenocarcinoma cells. Journal of Biochemical and Molecular Toxicology, 2022, 36, e22999.	1.4	9
58	A novel synthetic oleanane triterpenoid suppresses adhesion, migration, and invasion of highly metastatic melanoma cells by modulating gelatinase signaling axis. Molecular Carcinogenesis, 2015, 54, 654-667.	1.3	7
59	Modulation of arsenic induced cytotoxicity by tea. Asian Pacific Journal of Cancer Prevention, 2003, 4, 233-7.	0.5	7
60	Impact of anesthetics on oncogenic signaling network: a review on propofol and isoflurane. Fundamental and Clinical Pharmacology, 2022, 36, 49-71.	1.0	5
61	Phytochemicals for the Prevention and Treatment of Renal Cell Carcinoma: Preclinical and Clinical Evidence and Molecular Mechanisms. Cancers, 2022, 14, 3278.	1.7	5
62	Bioengineering of Extracellular Vesicles: Exosome-Based Next-Generation Therapeutic Strategy in Cancer. Bioengineering, 2021, 8, 139.	1.6	3
63	Modulation of the Nrf2 Signaling Pathway by Chemopreventive Dietary Phytoconstituents. , 2012, , 521-539.		1
64	A new systems approach to combat arsenic induced carcinogenesis. South Asian Journal of Cancer, 2013, 2, 82.	0.2	1
65	Natural Products as Chemosensitizers for Adjunct Therapy in Cancer Management. , 2020, , 67-119.		1