Zhongpeng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/690941/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ce–Ti Amorphous Oxides for Selective Catalytic Reduction of NO with NH ₃ : Confirmation of Ce–O–Ti Active Sites. Environmental Science & Technology, 2012, 46, 9600-9605.	4.6	349
2	Catalytic performance and mechanism of potassium-promoted Mg–Al hydrotalcite mixed oxides for soot combustion with O2. Journal of Catalysis, 2010, 271, 12-21.	3.1	122
3	Facile fabrication of 3D flower-like heterostructured g-C ₃ N ₄ /SnS ₂ composite with efficient photocatalytic activity under visible light. RSC Advances, 2014, 4, 31019-31027.	1.7	71
4	Simultaneous catalytic removal of NO and soot particulate over Co–Al mixed oxide catalysts derived from hydrotalcites. Catalysis Communications, 2007, 8, 1659-1664.	1.6	57
5	Catalytic combustion of soot particulates over rare-earth substituted Ln2Sn2O7 pyrochlores (Ln = La,) Tj ETQq1	1 0.7843	14 rgBT /Ove
6	Identification of active oxygen species for soot combustion on LaMnO3 perovskite. Catalysis Science and Technology, 2012, 2, 1822.	2.1	53
7	Determination of Intermediates and Mechanism for Soot Combustion with NO _{<i>x</i>} /O ₂ on Potassium-Supported Mgâ^Al Hydrotalcite Mixed Oxides by In Situ FTIR. Environmental Science & Technology, 2010, 44, 8254-8258.	4.6	49
8	Removal of phenolic substances from wastewater by algae. A review. Environmental Chemistry Letters, 2020, 18, 377-392.	8.3	46
9	Preparation, characterisation, and desalination performance study of cellulose acetate membranes with MIL-53(Fe) additive. Journal of Membrane Science, 2019, 590, 117057.	4.1	42
10	Catalytic oxidation of CO over mesoporous copper-doped ceria catalysts <i>via</i> a facile CTAB-assisted synthesis. RSC Advances, 2018, 8, 14888-14897.	1.7	38
11	Synthesis of rare earth (Pr, Nd, Sm, Eu and Gd) hydroxide and oxide nanorods (nanobundles) by a widely applicable precipitation route. Journal of Alloys and Compounds, 2010, 507, 105-111.	2.8	35
12	Catalytic oxidation of soot on mesoporous ceria-based mixed oxides with cetyltrimethyl ammonium bromide (CTAB)-assisted synthesis. Journal of Colloid and Interface Science, 2017, 508, 1-13.	5.0	34
13	Simultaneous catalytic removal of NOx and soot particulates over CuMgAl hydrotalcites derived mixed metal oxides. Applied Clay Science, 2012, 55, 125-130.	2.6	33
14	Quantification of the active site density and turnover frequency for soot combustion with O2 on Cr doped CeO2. Catalysis Today, 2011, 175, 112-116.	2.2	31
15	A reductant-resistant ratiometric, colorimetric and far-red fluorescent probe for rapid and ultrasensitive detection of nitroxyl. Journal of Materials Chemistry B, 2017, 5, 3557-3564.	2.9	29
16	Lanthanum-promoted copper-based hydrotalcites derived mixed oxides for NOx adsorption, soot combustion and simultaneous NOx-soot removal. Materials Research Bulletin, 2014, 51, 119-127.	2.7	27
17	Effect of surface and bulk palladium doping on the catalytic activity of La2Sn2O7 pyrochlore oxides for diesel soot oxidation. Journal of Materials Science, 2019, 54, 4495-4510.	1.7	24
18	Catalytic oxidation of diesel soot on mixed oxides derived from hydrotalcites. Catalysis Letters, 2006, 112, 149-154.	1.4	23

#	Article	IF	CITATIONS
19	Direct Spectroscopic Evidence of CO Spillover and Subsequent Reaction with Preadsorbed NO _{<i>x</i>} on Pd and K Cosupported Mg–Al Mixed Oxides. Environmental Science & Technology, 2012, 46, 9614-9619.	4.6	23
20	Preparation and Characterization of Novel Polyvinylidene Fluoride/2-Aminobenzothiazole Modified Ultrafiltration Membrane for the Removal of Cr(VI) in Wastewater. Polymers, 2018, 10, 19.	2.0	22
21	Catalytic oxidation of CO on mesoporous codoped ceria catalysts: Insights into correlation of physicochemical property and catalytic activity. Journal of Rare Earths, 2019, 37, 961-969.	2.5	22
22	Promotion Effects of Cesium on Perovskite Oxides for Catalytic Soot Combustion. Catalysis Letters, 2016, 146, 1397-1407.	1.4	20
23	Synthesis and characterization of Co–Al–Fe nonstoichiometric spinel-type catalysts for catalytic CO oxidation. RSC Advances, 2016, 6, 27052-27059.	1.7	18
24	Enhanced catalytic performance of cobalt and iron co-doped ceria catalysts for soot combustion. Journal of Materials Science, 2020, 55, 283-297.	1.7	18
25	Rare-earth (Nd, Sm, Eu, Gd and Y) enhanced CeO2 solid solution nanorods prepared by co-precipitation without surfactants. Materials Letters, 2010, 64, 2659-2662.	1.3	17
26	NO _x storage and soot combustion over well-dispersed mesoporous mixed oxides via hydrotalcite-like precursors. RSC Advances, 2015, 5, 52743-52753.	1.7	17
27	Catalytic Oxidation of Soot on a Novel Active Ca-Co Dually-Doped Lanthanum Tin Pyrochlore Oxide. Materials, 2018, 11, 653.	1.3	17
28	Synthesis of CeO ₂ â€Based Quantum Dots through a Polyolâ€Hydrolysis Method for Fuelâ€Borne Catalysts. ChemCatChem, 2011, 3, 1772-1778.	1.8	14
29	Determination of Mechanism for Soot Oxidation with NO on Potassium Supported Mgâ€Al Hydrotalcite Mixed Oxides. Chemical Engineering and Technology, 2011, 34, 1864-1868.	0.9	14
30	A Rational Design of the Sintering-Resistant Au-CeO2 Nanoparticles Catalysts for CO Oxidation: The Influence of H2 Pretreatments. Materials, 2018, 11, 1952.	1.3	14
31	Determination of 4-tert-octylphenol in surface water samples of Jinan in China by solid phase extraction coupled with GC-MS. Journal of Environmental Sciences, 2013, 25, 1712-1717.	3.2	13
32	Desalination Characteristics of Cellulose Acetate FO Membrane Incorporated with ZIF-8 Nanoparticles. Membranes, 2022, 12, 122.	1.4	13
33	Amorphous manganese oxide as highly active catalyst for soot oxidation. Environmental Science and Pollution Research, 2020, 27, 13488-13500.	2.7	11
34	Photocatalytic ultrafiltration membranes based on visible light responsive photocatalyst: a review. , 0, 168, 42-55.		11
35	High performance of K-supported Pr2Sn2O7 pyrochlore catalysts for soot oxidation. Fuel, 2022, 317, 123467.	3.4	11
36	Catalytic Oxidation Of Diesel Soot Over Transition Metal Doped Lanthanum Stannate Pyrochlores With A O2/No Mixture. Procedia Engineering, 2011, 24, 436-440.	1.2	10

ZHONGPENG WANG

#	Article	IF	CITATIONS
37	Rhodol-derived Colorimetric and Fluorescent Probe with the Receptor of Carbonothioate for the Specific Detection of Mercury Ions. Analytical Sciences, 2017, 33, 1169-1173.	0.8	10
38	Hydrotalcites-Derived Well-Dispersed Mixed Oxides for NO _{<i>x</i>} Adsorption and Desorption. Science of Advanced Materials, 2016, 8, 1656-1667.	0.1	10
39	Co–Mn–Al Nonstoichiometric Spinel-Type Catalysts Derived from Hydrotalcites for the Simultaneous Removal of Soot and Nitrogen Oxides. Science of Advanced Materials, 2013, 5, 1449-1457.	0.1	9
40	A novel ceria hollow nanosphere catalyst for low temperature NO storage. Journal of Rare Earths, 2022, 40, 626-635.	2.5	8
41	The preparation of ultrastable Al3+ doped CeO2 supported Au catalysts: Strong metal-support interaction for superior catalytic activity towards CO oxidation. Journal of Colloid and Interface Science, 2022, 627, 53-63.	5.0	8
42	Catalytic Soot Oxidation Over Ce- and Cu-Doped Hydrotalcites-Derived Mesoporous Mixed Oxides. Journal of Nanoscience and Nanotechnology, 2014, 14, 7087-7096.	0.9	7
43	Tuning the metal-support interaction in the thermal-resistant Au–CeO ₂ catalysts for CO oxidation: influence of a mild N ₂ pretreatment. RSC Advances, 2018, 8, 39197-39202.	1.7	7
44	High Performance of Mn-Doped MgAlOx Mixed Oxides for Low Temperature NOx Storage and Release. Catalysts, 2019, 9, 677.	1.6	7
45	Synthesis and Toluene Adsorption/Desorption Property of Beta Zeolite Coated on Cordierite Honeycomb by an In Situ Crystallization Method. Chemical Engineering and Technology, 2008, 31, 1856-1862.	0.9	6
46	Hydrothermal Synthesis of Lanthanide Stannates Pyrochlore Nanocrystals for Catalytic Combustion of Soot Particulates. Scientific World Journal, The, 2015, 2015, 1-8.	0.8	6
47	The surface restructuring of copper oxides with mixed oxidation-states and their efficient CO oxidation properties. Materials Letters, 2021, 289, 129378.	1.3	6
48	Preparation and Characterization of Modified Polyvinylidene Fluoride/2-Amino-4-thiazoleacetic Acid Ultrafiltration Membrane for Purification of Cr(VI) in Water. Journal of Chemical Engineering of Japan, 2018, 51, 501-506.	0.3	4
49	Synthesis and Characterization of CTA/CA-Based Forward Osmosis Membranes with Hydrophilic Nano-Titanium Dioxide. Materials Science Forum, 0, 867, 127-131.	0.3	3
50	Controllable Synthesis of Spindle-Shaped <i>β</i> -FeOOH and Its Effective Adsorption for High Concentrated Congo Red. Science of Advanced Materials, 2021, 13, 342-351.	0.1	3
51	Effect of Mn Incorporation Into Nd ₂ Sn ₂ O ₇ Pyrochlore Oxides on Catalytic Oxidation of Soot Particulates. Nanoscience and Nanotechnology Letters, 2016, 8, 1007-1013.	0.4	3
52	MIL-53(Fe)@Î ³ -Al2O3 nanocomposites incorporated cellulose acetate for forward osmosis membranes of high desalination performance. Environmental Engineering Research, 2023, 28, 210448-0.	1.5	3
53	A highly sensitive and selective fluorescent probe for fluoride anions based on intramolecular charge transfer. Luminescence, 2016, 31, 1166-1170.	1.5	2
54	Iron Doped Lanthanum Stannate Pyrochlores (La ₂ Sn _{2-X} Fe _X O ₇) for the Simultaneous Catalytic Removal NOx and Soot. Advanced Materials Research, 2011, 306-307, 1468-1472.	0.3	1

0

#	Article	IF	CITATIONS
55	SIMULTANEOUSLY CATALYTIC REMOVAL OF NO _x AND SOOT ON RARE EARTH ELEMENT OXIDE LOADED WITH POTASSIUM AND TRANSITION NANOSIZED METAL OXIDES. Nano, 2008, 03, 239-244.	0.5	0

56 Hydrothermal synthesis of Nd2Sn2O7 pyrochlore for catalytic soot combustion. , 2015, , 2809-2814.

5