Fiona M Sansom

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6909067/publications.pdf

Version: 2024-02-01

471509 395702 1,177 38 17 33 h-index citations g-index papers 39 39 39 1295 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Efficient disruption of the function of the mnuA nuclease gene using the endogenous CRISPR/Cas system in Mycoplasma gallisepticum. Veterinary Microbiology, 2022, 269, 109436.	1.9	7
2	A 25-year retrospective study of Chlamydia psittaci in association with equine reproductive loss in Australia. Journal of Medical Microbiology, 2021, 70, .	1.8	16
3	A <i>Mycoplasma gallisepticum</i> Glycerol ABC Transporter Involved in Pathogenicity. Applied and Environmental Microbiology, 2021, 87, .	3.1	7
4	Characterisation of putative lactate synthetic pathways of Coxiella burnetii. PLoS ONE, 2021, 16, e0255925.	2.5	2
5	SdrA, an NADP(H)â€regenerating enzyme, is crucial for <i>Coxiella burnetii</i> to resist oxidative stress and replicate intracellularly. Cellular Microbiology, 2020, 22, e13154.	2.1	11
6	Targeted mutagenesis of Mycoplasma gallisepticum using its endogenous CRISPR/Cas system. Veterinary Microbiology, 2020, 250, 108868.	1.9	17
7	Mycoplasma bovis <i>mbfN</i> Encodes a Novel LRR Lipoprotein That Undergoes Proteolytic Processing and Binds Host Extracellular Matrix Components. Journal of Bacteriology, 2020, 203, .	2.2	3
8	Detection ofÂCoxiella burnetiiÂand equine herpesvirus 1, but notÂLeptospiraÂspp. orÂToxoplasma gondii,Âin cases of equine abortion in Australia - a 25 year retrospective study. PLoS ONE, 2020, 15, e0233100.	2.5	10
9	EirA Is a Novel Protein Essential for Intracellular Replication of Coxiella burnetii. Infection and Immunity, 2020, 88, .	2.2	7
10	A combined metabolomic and bioinformatic approach to investigate the function of transport proteins of the important pathogen Mycoplasma bovis. Veterinary Microbiology, 2019, 234, 8-16.	1.9	15
11	Meso-tartrate inhibits intracellular replication of <i>Coxiella burnetii</i> , the causative agent of the zoonotic disease Q fever. Pathogens and Disease, 2019, 77, .	2.0	2
12	Koala and Wombat Gammaherpesviruses Encode the First Known Viral NTPDase Homologs and Are Phylogenetically Divergent from All Known Gammaherpesviruses. Journal of Virology, 2019, 93, .	3.4	2
13	Coxiella burnetii utilizes both glutamate and glucose during infection with glucose uptake mediated by multiple transporters. Biochemical Journal, 2019, 476, 2851-2867.	3.7	11
14	The major membrane nuclease MnuA degrades neutrophil extracellular traps induced by Mycoplasma bovis. Veterinary Microbiology, 2018, 218, 13-19.	1.9	49
15	De novo NAD synthesis is required for intracellular replication of Coxiella burnetii, the causative agent of the neglected zoonotic disease Q fever. Journal of Biological Chemistry, 2018, 293, 18636-18645.	3.4	14
16	Metabolite profiling of Mycoplasma gallisepticum mutants, combined with bioinformatic analysis, can reveal the likely functions of virulence-associated genes. Veterinary Microbiology, 2018, 223, 160-167.	1.9	10
17	Variation in the microbiome of the urogenital tract of Chlamydia-free female koalas (Phascolarctos) Tj ETQq1 1 C).784314 i 2.5	rgBT ₁₄ /Overlo <mark>c</mark> t
18	Comparative Metabolomics of Mycoplasma bovis and Mycoplasma gallisepticum Reveals Fundamental Differences in Active Metabolic Pathways and Suggests Novel Gene Annotations. MSystems, 2017, 2, .	3.8	35

#	Article	IF	Citations
19	Koala retrovirus genotyping analyses reveal a low prevalence of KoRV-A in Victorian koalas and an association with clinical disease. Journal of Medical Microbiology, 2017, 66, 236-244.	1.8	44
20	<i>Chlamydia pecorum</i> Infection in Free-ranging Koalas (<i>Phascolarctos cinereus</i>) on French Island, Victoria, Australia. Journal of Wildlife Diseases, 2016, 52, 426-429.	0.8	19
21	Identification of unusual Chlamydia pecorum genotypes in Victorian koalas (Phascolarctos cinereus) and clinical variables associated with infection. Journal of Medical Microbiology, 2016, 65, 420-428.	1.8	29
22	Golgi-Located NTPDase1 of Leishmania major Is Required for Lipophosphoglycan Elongation and Normal Lesion Development whereas Secreted NTPDase2 Is Dispensable for Virulence. PLoS Neglected Tropical Diseases, 2014, 8, e3402.	3.0	16
23	Multiple ecto-nucleoside triphosphate diphosphohydrolases facilitate intracellular replication of Legionella pneumophila. Biochemical Journal, 2014, 462, 279-289.	3.7	11
24	Leishmania major Methionine Sulfoxide Reductase A Is Required for Resistance to Oxidative Stress and Efficient Replication in Macrophages. PLoS ONE, 2013, 8, e56064.	2.5	18
25	The role of the NTPDase enzyme family in parasites: what do we know, and where to from here?. Parasitology, 2012, 139, 963-980.	1.5	40
26	Crystal Structure of a Legionella pneumophila Ecto -Triphosphate Diphosphohydrolase, A Structural and Functional Homolog of the Eukaryotic NTPDases. Structure, 2010, 18, 228-238.	3.3	39
27	The Legionella pneumophila F-box protein Lpp2082 (AnkB) modulates ubiquitination of the host protein parvin B and promotes intracellular replication. Cellular Microbiology, 2010, 12, 1272-1291.	2.1	134
28	Molecular Detection of Legionella: Moving on From mip. Frontiers in Microbiology, 2010, 1, 123.	3.5	15
29	Cutting Edge: Pulmonary <i>Legionella pneumophila</i> Is Controlled by Plasmacytoid Dendritic Cells but Not Type I IFN. Journal of Immunology, 2010, 184, 5429-5433.	0.8	43
30	Analysis of the Legionella longbeachae Genome and Transcriptome Uncovers Unique Strategies to Cause Legionnaires' Disease. PLoS Genetics, 2010, 6, e1000851.	3.5	143
31	Significant Role for <i>ladC</i> in Initiation of <i>Legionella pneumophila</i> Infection. Infection and Immunity, 2008, 76, 3075-3085.	2.2	31
32	Enzymatic Properties of an Ecto-nucleoside Triphosphate Diphosphohydrolase from Legionella pneumophila. Journal of Biological Chemistry, 2008, 283, 12909-12918.	3.4	54
33	Possible Effects of Microbial Ecto-Nucleoside Triphosphate Diphosphohydrolases on Host-Pathogen Interactions. Microbiology and Molecular Biology Reviews, 2008, 72, 765-781.	6.6	87
34	Sel1 Repeat Protein LpnE Is a <i>Legionella pneumophila</i> Virulence Determinant That Influences Vacuolar Trafficking. Infection and Immunity, 2007, 75, 5575-5585.	2.2	89
35	A bacterial ecto-triphosphate diphosphohydrolase similar to human CD39 is essential for intracellular multiplication of Legionella pneumophila. Cellular Microbiology, 2007, 9, 1922-1935.	2.1	72
36	Identification of Legionella pneumophila-Specific Genes by Genomic Subtractive Hybridization with Legionella micdadei and Identification of IpnE, a Gene Required for Efficient Host Cell Entry. Infection and Immunity, 2006, 74, 1683-1691.	2.2	60

#	Article	IF	CITATIONS
37	Eukaryotic-Like Proteins of <i>Legionella pneumophila</i> as Potential Virulence Factors., 0,, 246-250.		1
38	Role of <i>Legionella pneumophila</i> -Specific Genes in Pathogenesis., 0,, 251-254.		0