
Xin Ning

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6908667/publications.pdf Version: 2024-02-01

XIN NINC

#	Article	IF	CITATIONS
1	Quantifying the Complexity of Folding Origami Membranes. , 2021, , .		0
2	A geometry-based framework for modeling the complexity of origami folding. Theoretical and Applied Mechanics Letters, 2021, 11, 100241.	1.3	2
3	Biocompatible Light Guideâ€Assisted Wearable Devices for Enhanced UV Light Delivery in Deep Skin. Advanced Functional Materials, 2021, 31, 2100576.	7.8	26
4	Compliant 3D frameworks instrumented with strain sensors for characterization of millimeter-scale engineered muscle tissues. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	30
5	Miniaturized electromechanical devices for the characterization of the biomechanics of deep tissue. Nature Biomedical Engineering, 2021, 5, 759-771.	11.6	65
6	A Data-Driven Framework for Buckling Analysis of Near-Spherical Composite Shells Under External Pressure. Journal of Applied Mechanics, Transactions ASME, 2021, 88, .	1.1	5
7	Ultraâ€Flexible Visibleâ€Blind Optoelectronics for Wired and Wireless UV Sensing in Harsh Environments. Advanced Materials Technologies, 2021, 6, 2001125.	3.0	5
8	Harnessing the interface mechanics of hard films and soft substrates for 3D assembly by controlled buckling. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15368-15377.	3.3	54
9	A Bioresorbable Magnetically Coupled System for Lowâ€Frequency Wireless Power Transfer. Advanced Functional Materials, 2019, 29, 1905451.	7.8	58
10	Ultra-Thin, Ultra-Lightweight, and Multifunctional Skin for Highly Deformable Structures. , 2019, , .		2
11	Wireless, battery-free optoelectronic systems as subdermal implants for local tissue oximetry. Science Advances, 2019, 5, eaaw0873.	4.7	116
12	Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature, 2019, 575, 473-479.	13.7	610
13	Soft Three-Dimensional Microscale Vibratory Platforms for Characterization of Nano-Thin Polymer Films. ACS Nano, 2019, 13, 449-457.	7.3	28
14	Wireless optoelectronic photometers for monitoring neuronal dynamics in the deep brain. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1374-E1383.	3.3	167
15	Mechanically active materials in three-dimensional mesostructures. Science Advances, 2018, 4, eaat8313.	4.7	89
16	Assembly of Advanced Materials into 3D Functional Structures by Methods Inspired by Origami and Kirigami: A Review. Advanced Materials Interfaces, 2018, 5, 1800284.	1.9	195
17	3D Tunable, Multiscale, and Multistable Vibrational Microâ€Platforms Assembled by Compressive Buckling. Advanced Functional Materials, 2017, 27, 1605914.	7.8	43
18	Engineered Elastomer Substrates for Guided Assembly of Complex 3D Mesostructures by Spatially Nonuniform Compressive Buckling. Advanced Functional Materials, 2017, 27, 1604281.	7.8	50