Woongsup Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6908371/publications.pdf Version: 2024-02-01

WOONCSUPLEE

#	Article	IF	CITATIONS
1	Learning-Based Optimization of Wireless-Powered Two-Way Interference Channels With Imperfect CSI. IEEE Internet of Things Journal, 2022, 9, 6934-6943.	5.5	0
2	Deep-Learning-Assisted Wireless-Powered Secure Communications With Imperfect Channel State Information. IEEE Internet of Things Journal, 2022, 9, 11464-11476.	5.5	3
3	Deep Learning-Based Resource Allocation for Device-to-Device Communication. IEEE Transactions on Wireless Communications, 2022, 21, 5235-5250.	6.1	11
4	A Deep Learning Ensemble Method to Visual Acuity Measurement Using Fundus Images. Applied Sciences (Switzerland), 2022, 12, 3190.	1.3	6
5	A mobile traffic load prediction based on recurrent neural network: A case of telecommunication in Afghanistan. Electronics Letters, 2022, 58, 563-565.	0.5	1
6	Deep Learning-Based Transmit Power Control for Wireless-Powered Secure Communications With Heterogeneous Channel Uncertainty. IEEE Transactions on Vehicular Technology, 2022, 71, 11150-11159.	3.9	3
7	Resource Allocation Scheme for Guarantee of QoS in D2D Communications Using Deep Neural Network. IEEE Communications Letters, 2021, 25, 887-891.	2.5	30
8	Deep Learning Framework for Secure Communication With an Energy Harvesting Receiver. IEEE Transactions on Vehicular Technology, 2021, 70, 10121-10132.	3.9	6
9	Effect of Misaligned Relay on Output Power and Efficiency in Wireless Power Transfer. IEEE Access, 2021, 9, 49448-49456.	2.6	3
10	Deep Learning-Aided Distributed Transmit Power Control for Underlay Cognitive Radio Network. IEEE Transactions on Vehicular Technology, 2021, 70, 3990-3994.	3.9	16
11	Deep Learning for SWIPT: Optimization of Transmit-Harvest-Respond in Wireless-Powered Interference Channel. IEEE Transactions on Wireless Communications, 2021, 20, 5018-5033.	6.1	16
12	Robust Transmit Power Control With Imperfect CSI Using a Deep Neural Network. IEEE Transactions on Vehicular Technology, 2021, 70, 12266-12271.	3.9	4
13	Deep Scanning—Beam Selection Based on Deep Reinforcement Learning in Massive MIMO Wireless Communication System. Electronics (Switzerland), 2020, 9, 1844.	1.8	3
14	An Efficient Coded Streaming Using Clients' Cache. Sensors, 2020, 20, 6220.	2.1	3
15	A completely distributed transmission algorithm for mobile device-to-device caching networks. Computers and Electrical Engineering, 2020, 87, 106803.	3.0	7
16	IEEE Access Special Section Editorial: Green Signal Processing for Wireless Communicationsand Networking. IEEE Access, 2020, 8, 105169-105172.	2.6	0
17	Intelligent Resource Allocation in Wireless Communications Systems. IEEE Communications Magazine, 2020, 58, 100-105.	4.9	25
18	Learning-Based Resource Management for SWIPT. IEEE Systems Journal, 2020, 14, 4750-4753.	2.9	5

WOONGSUP LEE

#	Article	IF	CITATIONS
19	An Analysis of Price Competition in Heterogeneous Electric Vehicle Charging Stations. IEEE Transactions on Smart Grid, 2019, 10, 3990-4002.	6.2	42
20	Transmit Power Control Using Deep Neural Network for Underlay Device-to-Device Communication. IEEE Wireless Communications Letters, 2019, 8, 141-144.	3.2	63
21	Analysis of Growth Performance in Swine Based on Machine Learning. IEEE Access, 2019, 7, 161716-161724.	2.6	11
22	Distributed Transmit Power Optimization for Device-to-Device Communications Underlying Cellular Networks. IEEE Access, 2019, 7, 87617-87633.	2.6	13
23	Toward the Realization of Encoder and Decoder Using Deep Neural Networks. IEEE Communications Magazine, 2019, 57, 57-63.	4.9	8
24	A Deep Learning Based Transmission Algorithm for Mobile Device-to-Device Networks. Electronics (Switzerland), 2019, 8, 1361.	1.8	7
25	Prediction of average daily gain of swine based on machine learning. Journal of Intelligent and Fuzzy Systems, 2019, 36, 923-933.	0.8	6
26	Deep Cooperative Sensing: Cooperative Spectrum Sensing Based on Convolutional Neural Networks. IEEE Transactions on Vehicular Technology, 2019, 68, 3005-3009.	3.9	159
27	Deep Learning Based Transmit Power Control in Underlaid Device-to-Device Communication. IEEE Systems Journal, 2019, 13, 2551-2554.	2.9	38
28	A Novel PAPR Reduction Scheme for OFDM System Based on Deep Learning. IEEE Communications Letters, 2018, 22, 510-513.	2.5	157
29	Deep Power Control: Transmit Power Control Scheme Based on Convolutional Neural Network. IEEE Communications Letters, 2018, 22, 1276-1279.	2.5	207
30	Deep Learning-Aided SCMA. IEEE Communications Letters, 2018, 22, 720-723.	2.5	151
31	Performance analysis of opportunistic CSMA schemes in cognitive radio networks. Wireless Networks, 2018, 24, 833-845.	2.0	4
32	Uplink Resource Allocation for Interference Mitigation in Two-Tier Femtocell Networks. Mobile Information Systems, 2018, 2018, 1-6.	0.4	3
33	Backhaul traffic reduction using limited feedback in cellular frequency division duplex uplink networks. Computers and Electrical Engineering, 2018, 67, 38-51.	3.0	0
34	A Practical Physical-Layer Network Coding with Spatial Modulation in Two-Way Relay Networks. Computer Journal, 2018, 61, 264-272.	1.5	3
35	Resource Allocation for Multi-Channel Underlay Cognitive Radio Network Based on Deep Neural Network. IEEE Communications Letters, 2018, 22, 1942-1945.	2.5	101
36	Joint Optimization of Spectrum Sensing and Transmit Power in Energy Harvesting-Based Cognitive Radio Networks. IEEE Access, 2018, 6, 30653-30662.	2.6	24

#	Article	IF	CITATIONS
37	Resource Allocation Scheme for Multihop Cellular Networks Using Directional Transmission. Wireless Personal Communications, 2017, 94, 3355-3369.	1.8	2

Full-duplex generalized spatial modulation: A compressed sensing-based signal detection (invited) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

39	A New Cellular Network Structure Deploying Shared Relays with Sectorization. Wireless Personal Communications, 2017, 94, 2987-2999.	1.8	0
40	Pricingâ€based distributed spectrum access for cognitive radio networks with geolocation database. IET Communications, 2017, 11, 733-738.	1.5	5
41	An Implementation of LTE Simulator Based on NS-3 for Evaluating D2D Performance. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2017, E100.A, 2216-2218.	0.2	0
42	Improving Energy Efficiency of Cooperative Femtocell Networks via Base Station Switching Off. Mobile Information Systems, 2016, 2016, 1-6.	0.4	2
43	Autonomous Peer Discovery Scheme for D2D Communications Based on Spatial Correlation of Wireless Channel. IEICE Transactions on Communications, 2016, E99.B, 224-231.	0.4	2
44	Energy-Efficient On–Off Power Control of Femto-Cell Base Stations for Cooperative Cellular Networks. Applied Sciences (Switzerland), 2016, 6, 356.	1.3	2
45	Analysis of Coverage in Heterogeneous Cellular Networks. IEEE Communications Letters, 2016, 20, 1211-1214.	2.5	3
46	Resource Allocation for Vehicle-to-Infrastructure Communication Using Directional Transmission. IEEE Transactions on Intelligent Transportation Systems, 2016, 17, 1183-1188.	4.7	27
47	New D2D Peer Discovery Scheme Based on Spatial Correlation of Wireless Channel. IEEE Transactions on Vehicular Technology, 2016, 65, 10120-10125.	3.9	32
48	Electric Vehicle Charging Stations With Renewable Power Generators: A Game Theoretical Analysis. IEEE Transactions on Smart Grid, 2015, 6, 608-617.	6.2	173
49	Comparison of Channel State Acquisition Schemes in Cognitive Radio Environment. IEEE Transactions on Wireless Communications, 2014, 13, 2295-2307.	6.1	2
50	Direct Electricity Trading in Smart Grid: A Coalitional Game Analysis. IEEE Journal on Selected Areas in Communications, 2014, 32, 1398-1411.	9.7	171
51	Improved Cooperative Spectrum Sensing in Multiple Stages for Low-Power Primary Users. IEEE Wireless Communications Letters, 2013, 2, 287-290.	3.2	1
52	New Cooperation-Based Channel State Acquisition Scheme for Ad Hoc Cognitive Radio Systems. IEEE Transactions on Vehicular Technology, 2013, 62, 3325-3338.	3.9	9
53	Channel Selection and Spectrum Availability Check Scheme for Cognitive Radio Systems Considering User Mobility. IEEE Communications Letters, 2013, 17, 463-466.	2.5	10
54	Simultaneous RTS and Sequential CTS Considering Multiple Cooperative Relays. IEEE Transactions on Vehicular Technology, 2013, 62, 2369-2374.	3.9	6

#	Article	IF	CITATIONS
55	Performance Evaluation of Coordinated Multi-Point Transmission and Reception in Indoor Mobile Communication Systems. Journal of Information and Communication Convergence Engineering, 2013, 11, 167-172.	0.2	8
56	Comparison of channel information acquisition schemes in cognitive radio system. , 2012, , .		4
57	Concurrent spectrum sensing and data transmission scheme in a CR system. , 2012, , .		7
58	Adaptive interference estimation for directional transmission. , 2012, , .		3
59	Fair Clustering for Energy Efficiency in a Cooperative Wireless Sensor Network. , 2012, , .		5
60	Enhanced Spectrum Sensing Scheme in Cognitive Radio Systems With MIMO Antennae. IEEE Transactions on Vehicular Technology, 2011, 60, 1072-1085.	3.9	49
61	Enhanced Group Handover Scheme in Multiaccess Networks. IEEE Transactions on Vehicular Technology, 2011, 60, 2389-2395.	3.9	25
62	Distributed Scheduling Algorithm for Cooperative Transmission with Multiple Relays. , 2011, , .		2
63	Downlink Power Control Scheme for Smart Antenna Based Wireless Systems. , 2010, , .		8
64	A New Neighbor Discovery Scheme Based on Spatial Correlation of Wireless Channel. , 2009, , .		6
65	A New Velocity Estimation Scheme Based on Spatial Correlation of Wireless Communication Channel. , 2009, , .		2
66	Mean velocity estimation of mobile stations by spatial correlation of channels in cellular systems. IEEE Communications Letters, 2009, 13, 670-672.	2.5	10
67	Sensing Optimization Considering Sensing Capability of Cognitive Terminal in Cognitive Radio System. , 2008, , .		8
68	CQI Feedback Reduction Based on Spatial Correlation in OFDMA System. , 2008, , .		15
69	Cognition Based Seamless Transmissions by Using Underlay-Overlay Switching Method in Future Wireless Communication System. , 2007, , .		6