Barry Slobedman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6908285/publications.pdf

Version: 2024-02-01

94433 123424 4,116 86 37 citations h-index papers

g-index 89 89 89 4883 docs citations times ranked citing authors all docs

61

#	Article	IF	Citations
1	Manipulation of the Innate Immune Response by Varicella Zoster Virus. Frontiers in Immunology, 2020, 11, 1.	4.8	516
2	Quantitative Analysis of Latent Human Cytomegalovirus. Journal of Virology, 1999, 73, 4806-4812.	3.4	215
3	A Novel Viral Transcript with Homology to Human Interleukin-10 Is Expressed during Latent Human Cytomegalovirus Infection. Journal of Virology, 2004, 78, 1440-1447.	3.4	175
4	Virus-Encoded Homologs of Cellular Interleukin-10 and Their Control of Host Immune Function. Journal of Virology, 2009, 83, 9618-9629.	3.4	133
5	Modulation of Major Histocompatibility Class II Protein Expression by Varicella-Zoster Virus. Journal of Virology, 2000, 74, 1900-1907.	3.4	125
6	Varicella-Zoster Virus Retains Major Histocompatibility Complex Class I Proteins in the Golgi Compartment of Infected Cells. Journal of Virology, 2001, 75, 4878-4888.	3.4	118
7	Viral gene expression during the establishment of human cytomegalovirus latent infection in myeloid progenitor cells. Blood, 2006, 108, 3691-3699.	1.4	113
8	Varicella-Zoster Virus Productively Infects Mature Dendritic Cells and Alters Their Immune Function. Journal of Virology, 2003, 77, 4950-4959.	3.4	111
9	Varicella-Zoster Virus Infection of Human Dendritic Cells and Transmission to T Cells: Implications for Virus Dissemination in the Host. Journal of Virology, 2001, 75, 6183-6192.	3.4	108
10	Human Cytomegalovirus Latency and Reactivation in Allogeneic Hematopoietic Stem Cell Transplant Recipients. Frontiers in Microbiology, 2019, 10, 1186.	3.5	105
11	Analysis of T Cell Responses during Active Varicella-Zoster Virus Reactivation in Human Ganglia. Journal of Virology, 2014, 88, 2704-2716.	3.4	99
12	The role of the human cytomegalovirus UL111A gene in down-regulating CD4+ T-cell recognition of latently infected cells: implications for virus elimination during latency. Blood, 2009, 114, 4128-4137.	1.4	84
13	Downstream targets of methyl CpG binding protein 2 and their abnormal expression in the frontal cortex of the human Rett syndrome brain. BMC Neuroscience, 2010, 11, 53.	1.9	84
14	Varicella-Zoster Virus ORF63 Inhibits Apoptosis of Primary Human Neurons. Journal of Virology, 2006, 80, 1025-1031.	3.4	81
15	Human Cytomegalovirus Encoded Homologs of Cytokines, Chemokines and their Receptors: Roles in Immunomodulation. Viruses, 2012, 4, 2448-2470.	3.3	80
16	Interferon-Independent Upregulation of Interferon-Stimulated Genes during Human Cytomegalovirus Infection is Dependent on IRF3 Expression. Viruses, 2019, 11, 246.	3.3	75
17	Human Cytomegalovirus Interleukin-10 Polarizes Monocytes toward a Deactivated M2c Phenotype To Repress Host Immune Responses. Journal of Virology, 2013, 87, 10273-10282.	3.4	71
18	Varicella-Zoster Virus-Infected Human Sensory Neurons Are Resistant to Apoptosis, yet Human Foreskin Fibroblasts Are Susceptible: Evidence for a Cell-Type-Specific Apoptotic Response. Journal of Virology, 2003, 77, 12852-12864.	3.4	70

#	Article	IF	CITATIONS
19	Characterization of the Host Immune Response in Human Ganglia after Herpes Zoster. Journal of Virology, 2010, 84, 8861-8870.	3.4	64
20	Impact of Human Cytomegalovirus Latent Infection on Myeloid Progenitor Cell Gene Expression. Journal of Virology, 2004, 78, 4054-4062.	3.4	63
21	HIV-1–infected dendritic cells show 2 phases of gene expression changes, with lysosomal enzyme activity decreased during the second phase. Blood, 2009, 114, 85-94.	1.4	63
22	Multicenter evaluation of PCR methods fordetecting CMV DNA in blood donors. Transfusion, 2001, 41, 1249-1257.	1.6	62
23	Impact of Varicella-Zoster Virus on Dendritic Cell Subsets in Human Skin during Natural Infection. Journal of Virology, 2010, 84, 4060-4072.	3.4	62
24	Human Cytomegalovirus-Encoded Human Interleukin-10 (IL-10) Homolog Amplifies Its Immunomodulatory Potential by Upregulating Human IL-10 in Monocytes. Journal of Virology, 2016, 90, 3819-3827.	3.4	60
25	Latency-Associated Viral Interleukin-10 (IL-10) Encoded by Human Cytomegalovirus Modulates Cellular IL-10 and CCL8 Secretion during Latent Infection through Changes in the Cellular MicroRNA hsa-miR-92a. Journal of Virology, 2014, 88, 13947-13955.	3.4	53
26	Stimulation of B lymphocytes by cmvlL-10 but not LAcmvlL-10. Virology, 2008, 374, 164-169.	2.4	52
27	Human cytomegalovirus latent infection and associated viral gene expression. Future Microbiology, 2010, 5, 883-900.	2.0	51
28	Human Cytomegalovirus Latency-Associated Protein pORF94 Is Dispensable for Productive and Latent Infection. Journal of Virology, 2000, 74, 9333-9337.	3.4	50
29	Varicella Zoster Virus Immune Evasion Strategies. Current Topics in Microbiology and Immunology, 2010, 342, 155-171.	1.1	46
30	Mass Cytometry for the Assessment of Immune Reconstitution After Hematopoietic Stem Cell Transplantation. Frontiers in Immunology, 2018, 9, 1672.	4.8	46
31	Single cell analysis reveals human cytomegalovirus drives latently infected cells towards an anergic-like monocyte state. ELife, 2020, 9, .	6.0	46
32	Upregulation of CXCL10 in Human Dorsal Root Ganglia during Experimental and Natural Varicella-Zoster Virus Infection. Journal of Virology, 2011, 85, 626-631.	3.4	45
33	Viral Interleukin-10 Expressed by Human Cytomegalovirus during the Latent Phase of Infection Modulates Latently Infected Myeloid Cell Differentiation. Journal of Virology, 2011, 85, 7465-7471.	3.4	45
34	Differentiated Neuroblastoma Cells Provide a Highly Efficient Model for Studies of Productive Varicella-Zoster Virus Infection of Neuronal Cells. Journal of Virology, 2011, 85, 8436-8442.	3.4	45
35	Varicella zoster virus productively infects human natural killer cells and manipulates phenotype. PLoS Pathogens, 2018, 14, e1006999.	4.7	43
36	Latent cytomegalovirus down-regulates major histocompatibility complex class II expression on myeloid progenitors. Blood, 2002, 100, 2867-2873.	1.4	41

#	Article	IF	Citations
37	Cytomegalovirus Restructures Lipid Rafts via a US28/CDC42-Mediated Pathway, Enhancing Cholesterol Efflux from Host Cells. Cell Reports, 2016, 16, 186-200.	6.4	39
38	Interferon-Independent Innate Responses to Cytomegalovirus. Frontiers in Immunology, 2019, 10, 2751.	4.8	37
39	Productive Varicella-Zoster Virus Infection of Cultured Intact Human Ganglia. Journal of Virology, 2007, 81, 6752-6756.	3.4	35
40	Expression of a human cytomegalovirus latency-associated homolog of interleukin-10 during the productive phase of infection. Virology, 2008, 370, 285-294.	2.4	35
41	Virus-Mediated Suppression of the Antigen Presentation Molecule MR1. Cell Reports, 2020, 30, 2948-2962.e4.	6.4	35
42	Varicella-Zoster Virus and Herpes Simplex Virus 1 Differentially Modulate NKG2D Ligand Expression during Productive Infection. Journal of Virology, 2015, 89, 7932-7943.	3.4	34
43	Varicella zoster virus encodes a viral decoy RHIM to inhibit cell death. PLoS Pathogens, 2020, 16, e1008473.	4.7	34
44	Human Cytomegalovirus Latent Infection of Myeloid Cells Directs Monocyte Migration by Up-Regulating Monocyte Chemotactic Protein-1. Journal of Immunology, 2008, 180, 6577-6585.	0.8	30
45	Koi Herpesvirus Encodes and Expresses a Functional Interleukin-10. Journal of Virology, 2012, 86, 11512-11520.	3.4	30
46	Infection and Functional Modulation of Human Monocytes and Macrophages by Varicella-Zoster Virus. Journal of Virology, 2019, 93, .	3.4	30
47	Varicella-Zoster Virus Inhibition of the NF-κB Pathway during Infection of Human Dendritic Cells: Role for Open Reading Frame 61 as a Modulator of NF-κB Activity. Journal of Virology, 2012, 86, 1193-1202.	3.4	29
48	Modulation of dendritic cell functions by viral IL-10 encoded by human cytomegalovirus. Frontiers in Microbiology, 2014, 5, 337.	3.5	29
49	Characteristics of cyprinid herpesvirus 3 in different phases of infection: Implications for disease transmission and control. Virus Research, 2014, 188, 45-53.	2.2	24
50	Human Cytomegalovirus Upregulates Expression of the Lectin Galectin 9 via Induction of Beta Interferon. Journal of Virology, 2014, 88, 10990-10994.	3.4	23
51	Gene expression in HIV-1/Mycobacterium tuberculosis co-infected macrophages is dominated by M. tuberculosis. Tuberculosis, 2009, 89, 285-293.	1.9	22
52	Inhibition of 2',5'-Oligoadenylate Synthetase Expression and Function by the Human Cytomegalovirus ORF94 Gene Product. Journal of Virology, 2011, 85, 5696-5700.	3.4	22
53	Gal power: the diverse roles of galectins in regulating viral infections. Journal of General Virology, 2019, 100, 333-349.	2.9	22
54	Functional paralysis of human natural killer cells by alphaherpesviruses. PLoS Pathogens, 2019, 15, e1007784.	4.7	20

#	Article	IF	CITATIONS
55	Abrogation of the Interferon Response Promotes More Efficient Human Cytomegalovirus Replication. Journal of Virology, 2015, 89, 1479-1483.	3.4	19
56	Concatemeric Intermediates of Equine Herpesvirus Type 1 DNA Replication Contain Frequent Inversions of Adjacent Long Segments of the Viral Genome. Virology, 1997, 229, 415-420.	2.4	18
57	Experimental Models to Study Varicella-Zoster Virus Infection of Neurons. Current Topics in Microbiology and Immunology, 2010, 342, 211-228.	1.1	18
58	Modulation of the Host Environment by Human Cytomegalovirus with Viral Interleukin 10 in Peripheral Blood. Journal of Infectious Diseases, 2017, 215, 874-882.	4.0	18
59	Restriction of Human Cytomegalovirus Infection by Galectin-9. Journal of Virology, 2019, 93, .	3.4	18
60	Mass cytometry reveals immune signatures associated with cytomegalovirus (CMV) control in recipients of allogeneic haemopoietic stem cell transplant and CMVâ€specific T cells. Clinical and Translational Immunology, 2020, 9, e1149.	3.8	18
61	Granzyme B Cleaves Multiple Herpes Simplex Virus 1 and Varicella-Zoster Virus (VZV) Gene Products, and VZV ORF4 Inhibits Natural Killer Cell Cytotoxicity. Journal of Virology, 2019, 93, .	3.4	17
62	Whole-Genome Approach to Assessing Human Cytomegalovirus Dynamics in Transplant Patients Undergoing Antiviral Therapy. Frontiers in Cellular and Infection Microbiology, 2020, 10, 267.	3.9	17
63	Enhanced monocyte Fc phagocytosis by a homologue of interleukin-10 encoded by human cytomegalovirus. Virology, 2009, 391, 20-24.	2.4	15
64	Varicella-Zoster Virus ORF63 Protects Human Neuronal and Keratinocyte Cell Lines from Apoptosis and Changes Its Localization upon Apoptosis Induction. Journal of Virology, 2018, 92, .	3.4	14
65	Repression of human cytomegalovirus major immediate early gene expression by the cellular transcription factor CCAAT displacement protein. Virology, 2008, 378, 214-225.	2.4	11
66	Microarrays for the Study of Viral Gene Expression During Human Cytomegalovirus Latent Infection. Methods in Molecular Medicine, 2008, 141, 153-175.	0.8	11
67	Nuclear domain 10 components upregulated via interferon during human cytomegalovirus infection potently regulate viral infection. Journal of General Virology, 2017, 98, 1795-1805.	2.9	11
68	Varicella Zoster Virus Impairs Expression of the Nonclassical Major Histocompatibility Complex Class I–Related Gene Protein (MR1). Journal of Infectious Diseases, 2023, 227, 391-401.	4.0	11
69	Effect of phthiocerol dimycocerosate deficiency on the transcriptional response of human macrophages to Mycobacterium tuberculosis. Microbes and Infection, 2007, 9, 87-95.	1.9	10
70	Analysis of immune responses to varicella zoster viral proteins induced by DNA vaccination. Antiviral Research, 1999, 44, 179-192.	4.1	9
71	Persistence of a T Cell Infiltrate in Human Ganglia Years After Herpes Zoster and During Post-herpetic Neuralgia. Frontiers in Microbiology, 2019, 10, 2117.	3.5	8
72	Immunoprofiling reveals cell subsets associated with the trajectory of cytomegalovirus reactivation post stem cell transplantation. Nature Communications, 2022, 13, 2603.	12.8	8

#	Article	IF	CITATIONS
73	Varicella-Zoster Virus Glycoprotein I Is Essential for Spread in Dorsal Root Ganglia and Facilitates Axonal Localization of Structural Virion Components in Neuronal Cultures. Journal of Virology, 2013, 87, 13719-13728.	3.4	7
74	Inhibition of integrin \hat{l} ±6 expression by cell-free varicella-zoster virus. Journal of General Virology, 2012, 93, 1725-1730.	2.9	5
75	Mechanisms modulating immune clearance during human cytomegalovirus latency. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14291-14292.	7.1	4
76	The host immune response to varicella zoster virus. Future Virology, 2012, 7, 1205-1220.	1.8	4
77	Varicella-Zoster Virus and Giant Cell Arteritis. Journal of Infectious Diseases, 2021, 223, 4-6.	4.0	4
78	Profiling the Blood Compartment of Hematopoietic Stem Cell Transplant Patients During Human Cytomegalovirus Reactivation. Frontiers in Cellular and Infection Microbiology, 2020, 10, 607470.	3.9	4
79	Viral Impacts on MR1 Antigen Presentation to MAIT Cells. Critical Reviews in Immunology, 2021, 41, 49-67.	0.5	3
80	<i>In Situ</i> PCR for the Detection of Human Cytomegalovirus in Suspension Cells During the Latent Phase of Infection. , 2006, 334, 199-210.		1
81	Modulation of MHC and MHC-Like Molecules by Varicella Zoster Virus. Current Topics in Microbiology and Immunology, 2022, , $1.$	1.1	1
82	Varicella zoster virus encodes a viral decoy RHIM to inhibit cell death., 2020, 16, e1008473.		0
83	Varicella zoster virus encodes a viral decoy RHIM to inhibit cell death. , 2020, 16, e1008473.		O
84	Varicella zoster virus encodes a viral decoy RHIM to inhibit cell death., 2020, 16, e1008473.		0
85	Varicella zoster virus encodes a viral decoy RHIM to inhibit cell death. , 2020, 16, e1008473.		0
86	Modulation of Apoptosis and Cell Death Pathways by Varicella-Zoster Virus. Current Topics in Microbiology and Immunology, 2021, , .	1.1	O