Angela Stefanachi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6907904/publications.pdf Version: 2024-02-01

ANCELA STEEANACHL

#	Article	IF	CITATIONS
1	Optimization of 2-Amino-4,6-diarylpyrimidine-5-carbonitriles as Potent and Selective A1 Antagonists. Journal of Medicinal Chemistry, 2022, 65, 2091-2106.	6.4	2
2	Negatively charged ions to probe self-assembled monolayer reorganization driven by interchain interactions. Journal of Materials Chemistry C, 2021, 9, 10935-10943.	5.5	5
3	Surface composition of mixed self-assembled monolayers on Au by infrared attenuated total reflection spectroscopy. Applied Surface Science, 2021, 559, 149883.	6.1	7
4	3,4-Dihydropyrimidin-2(1 <i>H</i>)-ones as Antagonists of the Human A _{2B} Adenosine Receptor: Optimization, Structure–Activity Relationship Studies, and Enantiospecific Recognition. Journal of Medicinal Chemistry, 2021, 64, 458-480.	6.4	19
5	Design and synthesis of fluorescent ligands for the detection of cannabinoid type 2 receptor (CB2R). European Journal of Medicinal Chemistry, 2020, 188, 112037.	5.5	14
6	Human ether-Ã-go-go-related potassium channel: exploring SAR to improve drug design. Drug Discovery Today, 2020, 25, 344-366.	6.4	33
7	Cannabinoid Receptor Subtype 2 (CB2R) in a Multitarget Approach: Perspective of an Innovative Strategy in Cancer and Neurodegeneration. Journal of Medicinal Chemistry, 2020, 63, 14448-14469.	6.4	26
8	Bcr-Abl Allosteric Inhibitors: Where We Are and Where We Are Going to. Molecules, 2020, 25, 4210.	3.8	13
9	Hydroxy-Propil-β-Cyclodextrin Inclusion Complexes of two Biphenylnicotinamide Derivatives: Formulation and Anti-Proliferative Activity Evaluation in Pancreatic Cancer Cell Models. International Journal of Molecular Sciences, 2020, 21, 6545.	4.1	4
10	Bcr-Abl Tyrosine Kinase Inhibitors in the Treatment of Pediatric CML. International Journal of Molecular Sciences, 2020, 21, 4469.	4.1	19
11	Enhancing the Sensitivity of Biotinylated Surfaces by Tailoring the Design of the Mixed Self-Assembled Monolayer Synthesis. ACS Omega, 2020, 5, 16762-16771.	3.5	22
12	Coumarin: A Natural, Privileged and Versatile Scaffold for Bioactive Compounds. Molecules, 2018, 23, 250.	3.8	388
13	Investigating Structural Requirements for the Antiproliferative Activity of Biphenyl Nicotinamides. ChemMedChem, 2017, 12, 1380-1389.	3.2	6
14	Design, synthesis, biological evaluation, <scp>NMR</scp> and <scp>DFT</scp> studies of structurally simplified trimethoxy benzamides as selective Pâ€glycoprotein inhibitors: the role of molecular flatness. Chemical Biology and Drug Design, 2016, 88, 820-831.	3.2	3
15	Mind the Gap! A Journey towards Computational Toxicology. Molecular Informatics, 2016, 35, 294-308.	2.5	25
16	Galloyl benzamide-based compounds modulating tumour necrosis factor α-stimulated c-Jun N-terminal kinase and p38 mitogen-activated protein kinase signalling pathways. Journal of Pharmacy and Pharmacology, 2015, 67, 1380-1392.	2.4	4
17	Discovery of new 7-substituted-4-imidazolylmethyl coumarins and 4′-substituted-2-imidazolyl acetophenones open analogues as potent and selective inhibitors of steroid-11β-hydroxylase. European Journal of Medicinal Chemistry, 2015, 89, 106-114.	5.5	22
18	Trimethoxybenzanilide-Based P-Glycoprotein Modulators: An Interesting Case of Lipophilicity Tuning by Intramolecular Hydrogen Bonding. Journal of Medicinal Chemistry, 2014, 57, 6403-6418.	6.4	23

#	Article	IF	CITATIONS
19	Discovery, Biological Evaluation, and Structure–Activity and â^'Selectivity Relationships of 6′-Substituted (<i>E</i>)-2-(Benzofuran-3(2 <i>H</i>)-ylidene)- <i>N</i> -methylacetamides, a Novel Class of Potent and Selective Monoamine Oxidase Inhibitors. Journal of Medicinal Chemistry, 2013, 56, 2651-2664.	6.4	56
20	Fine molecular tuning at position 4 of 2H-chromen-2-one derivatives in the search of potent and selective monoamine oxidase B inhibitors. European Journal of Medicinal Chemistry, 2013, 70, 723-739.	5.5	41
21	Design, synthesis and biological evaluation of coumarin alkylamines as potent and selective dual binding site inhibitors of acetylcholinesterase. Bioorganic and Medicinal Chemistry, 2013, 21, 146-152.	3.0	80
22	Computational methods for the design of potent aromatase inhibitors. Expert Opinion on Drug Discovery, 2013, 8, 395-409.	5.0	28
23	Potent Galloyl-Based Selective Modulators Targeting Multidrug Resistance Associated Protein 1 and P-glycoprotein. Journal of Medicinal Chemistry, 2012, 55, 424-436.	6.4	34
24	Design, synthesis and biological evaluation of 5-hydroxy, 5-substituted-pyrimidine-2,4,6-triones as potent inhibitors of gelatinases MMP-2 and MMP-9. European Journal of Medicinal Chemistry, 2012, 58, 368-376.	5.5	42
25	Design, Synthesis, and Biological Evaluation of 2â€Aminobenzanilide Derivatives as Potent and Selective HDAC Inhibitors. ChemMedChem, 2012, 7, 1256-1266.	3.2	16
26	Toward a fragment-based approach to MMPs inhibitors: an expedite and efficient synthesis of N-hydroxylactams. Tetrahedron Letters, 2012, 53, 4114-4116.	1.4	8
27	Design, Synthesis, and Biological Evaluation of Imidazolyl Derivatives of 4,7-Disubstituted Coumarins as Aromatase Inhibitors Selective over 17-α-Hydroxylase/C17â^'20 Lyase. Journal of Medicinal Chemistry, 2011, 54, 1613-1625.	6.4	78
28	Strategies of multi-objective optimization in drug discovery and development. Expert Opinion on Drug Discovery, 2011, 6, 871-884.	5.0	31
29	Insights into the Complex Formed by Matrix Metalloproteinase-2 and Alloxan Inhibitors: Molecular Dynamics Simulations and Free Energy Calculations. PLoS ONE, 2011, 6, e25597.	2.5	12
30	Discovery of a Potent and Selective Heteroâ€Bivalent AChE Inhibitor via Bioisosteric Replacement. Molecular Informatics, 2011, 30, 133-136.	2.5	8
31	Design, Synthesis, and Biological Evaluation of Coumarin Derivatives Tethered to an Edrophoniumâ€ike Fragment as Highly Potent and Selective Dual Binding Site Acetylcholinesterase Inhibitors. ChemMedChem, 2010, 5, 1616-1630.	3.2	58
32	Solid phase synthesis of a molecular library of pyrimidines, pyrazoles, and isoxazoles with biological potential. Tetrahedron Letters, 2010, 51, 1702-1705.	1.4	18
33	1,3-Dialkyl-8-N-substituted benzyloxycarbonylamino-9-deazaxanthines as potent adenosine receptor ligands: Design, synthesis, structure–affinity and structure–selectivity relationships. Bioorganic and Medicinal Chemistry, 2009, 17, 3618-3629.	3.0	12
34	1-, 3- and 8-substituted-9-deazaxanthines as potent and selective antagonists at the human A2B adenosine receptor. Bioorganic and Medicinal Chemistry, 2008, 16, 2852-2869.	3.0	27
35	Design, synthesis, and biological evaluation of glycine-based molecular tongs as inhibitors of Aβ1–40 aggregation in vitro. Bioorganic and Medicinal Chemistry, 2008, 16, 4810-4822.	3.0	27
36	Homo- and hetero-bivalent edrophonium-like ammonium salts as highly potent, dual binding site AChE inhibitors. Bioorganic and Medicinal Chemistry, 2008, 16, 7450-7456.	3.0	60

#	Article	IF	CITATIONS
37	1,3-Dialkyl-8-(hetero)aryl-9-OH-9-deazaxanthines as potent A2B adenosine receptor antagonists: Design, synthesis, structure–affinity and structure–selectivity relationships. Bioorganic and Medicinal Chemistry, 2008, 16, 9780-9789.	3.0	24
38	Synthetic Applications of Polystyrene-Supported 1,1,3,3-Tetramethylguanidine. Combinatorial Chemistry and High Throughput Screening, 2008, 11, 843-847.	1.1	3
39	Solid-Phase Synthesis and Insights into Structureâ^'Activity Relationships of Safinamide Analogues as Potent and Selective Inhibitors of Type B Monoamine Oxidase. Journal of Medicinal Chemistry, 2007, 50, 4909-4916.	6.4	49
40	Design, Synthesis, and Structureâ^'Activity Relationships of 1-,3-,8-, and 9-Substituted-9-deazaxanthines at the Human A2BAdenosine Receptor. Journal of Medicinal Chemistry, 2006, 49, 282-299.	6.4	37
41	8-Substituted-9-deazaxanthines as Adenosine Receptor Ligands: Design, Synthesis and Structure-Affinity Relationships at A2B ChemInform, 2005, 36, no.	0.0	0
42	8-Substituted-9-deazaxanthines as adenosine receptor ligands: design, synthesis and structure-affinity relationships at A2B. European Journal of Medicinal Chemistry, 2004, 39, 879-887.	5.5	26
43	Fast and Highly Efficient One-Pot Synthesis of 9-Deazaxanthines ChemInform, 2003, 34, no.	0.0	0
44	Fast and highly efficient one-pot synthesis of 9-deazaxanthines. Tetrahedron Letters, 2003, 44, 2121-2123.	1.4	23
45	Synthesis of 1-Substituted-6-methyluracils. Chemical and Pharmaceutical Bulletin, 2003, 51, 1025-1028.	1.3	9