
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6907712/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phosphine-Mediated Sequential [2+4]/[2+3] Annulation to Construct Pyrroloquinolines. Organic Letters, 2022, 24, 1593-1597.	4.6	14
2	Oneâ€Pot Synthesis of 2,3,6â€Trisubstituted Pyridines by Phosphineâ€Catalyzed Annulation of γâ€Vinyl Allenoates with Enamino Esters Followed by DDQâ€Promoted Oxidative Aromatization. Advanced Synthesis and Catalysis, 2022, 364, 1879-1883.	4.3	7
3	Phosphine-catalyzed sequential (2+3)/(2+4) annulation of γ-vinyl allenoates: access to the synthesis of chromeno[4,3- <i>b</i>]pyrroles. Chemical Communications, 2021, 57, 9934-9937.	4.1	9
4	Advances in Organophosphorus Redox Catalysis. Chinese Journal of Organic Chemistry, 2021, 41, 3903.	1.3	9
5	De Novo Construction of Substituted Terephthalates via Phosphine Catalyzed Domino Benzannulation Reactions. Advanced Synthesis and Catalysis, 2021, 363, 1873-1877.	4.3	6
6	Designing and Accurately Developing a [6 + 2] Dipolar Cycloaddition for the Synthesis of Benzodiazocines. Organic Letters, 2021, 23, 5430-5434.	4.6	17
7	Catalyst-Controlled Divergent Intramolecular Cyclizations of Morita–Baylis–Hillman Carbonates. Journal of Organic Chemistry, 2021, 86, 12267-12276.	3.2	13
8	DABCO catalyzed [4+2] annulations of Morita–Baylis–Hillman carbonates with isocyanates. Chemical Communications, 2021, 57, 8985-8988.	4.1	12
9	Asymmetric Sequential Corey–Chaykovsky Cyclopropanation/Cloke–Wilson Rearrangement for the Synthesis of 2,3-Dihydrofurans. Organic Letters, 2021, 23, 8755-8760.	4.6	11
10	Recent advances in phosphine catalysis involving Î ³ -substituted allenoates. Chemical Communications, 2020, 56, 680-694.	4.1	131
11	Phosphine-Catalyzed (3 + 2)/(3 + 2) Sequential Annulation of Î ³ -Vinyl Allenoates: Access to Fused Carbocycles. Organic Letters, 2020, 22, 433-437.	4.6	29
12	Phosphine-Catalyzed Sequential [3+3]/Aza-6ï€-Electrocyclization Reaction of Cross-Conjugated Azatrienes and δ-Sulfonamido-Allenoates. Organic Letters, 2020, 22, 9392-9397.	4.6	13
13	Divergent Domino Reactions of Prop-2-ynylsulfonium Salts: Access to Sulfur-Containing Benzo-Fused Dioxabicyclo[3.3.1]nonanes and Dihydrofuro[2,3- <i>c</i>]chromenes. Organic Letters, 2020, 22, 5941-5946.	4.6	13
14	Construction of CF ₃ -Containing Tetrahydropyrano[3,2- <i>b</i>]indoles through DMAP-Catalyzed [4+1]/[3+3] Domino Sequential Annulation. Organic Letters, 2020, 22, 6750-6755.	4.6	17
15	Phosphineâ€Catalyzed δâ€Addition Reaction of γâ€Substituted Allenoates with Isatin Derivatives. Asian Journal of Organic Chemistry, 2020, 9, 1179-1182.	2.7	4
16	Phosphine-Catalyzed Remote 1,7-Addition for Synthesis of Diene Carboxylates. ACS Catalysis, 2020, 10, 3541-3547.	11.2	34
17	Organocatalyzed [3+3] Annulations for the Construction of Heterocycles. Synthesis, 2020, 52, 1181-1202.	2.3	6
18	Facile access to highly functionalized hydroisoquinoline derivatives <i>via</i> phosphine-catalyzed sequential [3+3]/[3+3] annulation. Chemical Communications, 2019, 55, 10976-10979.	4.1	17

#	Article	IF	CITATIONS
19	Phosphine-Catalyzed Divergent [4+3] Domino Annulations of CF3-Containing Imines with MBH Carbonates: Construction of Perfluoroalkylated Benzazepines. Organic Letters, 2019, 21, 7060-7064.	4.6	27
20	Phosphine-catalyzed regiodivergent annulations of Î ³ -substituted allenoates with conjugated dienes. Chemical Communications, 2019, 55, 10120-10123.	4.1	18
21	DABCO-mediated [3+3] annulation of <i>para</i> -quinamines: access to functionalized 1,2,4-triazinone derivatives. Chemical Communications, 2019, 55, 10135-10137.	4.1	14
22	Phosphine Sequentially Catalyzed Domino 1,6-Addition/Annulation: Access to Functionalized Chromans and Tetrahydroquinolines with an Ethynyl-Substituted All-Carbon Quaternary Center. Organic Letters, 2019, 21, 908-912.	4.6	51
23	Nazarov Reagent: New Role for the [4+2] Domino Benzannulation Reaction to Construct Polysubstituted Benzenes. Chemistry - an Asian Journal, 2019, 14, 2588-2593.	3.3	15
24	Phosphine-Catalyzed Domino [3 + 3] Cyclization of para-Quinamines with Morita–Baylis–Hillman Carbonates: Access to Hydroquinoline Derivatives. Organic Letters, 2019, 21, 2843-2846.	4.6	40
25	Sequential Phosphine-Catalyzed [4 + 2] Annulation of β′-Acetoxy Allenoates: Enantioselective Synthesis of 3-Ethynyl-Substituted Tetrahydroquinolines. Organic Letters, 2019, 21, 1407-1411.	4.6	31
26	Phosphine-catalyzed (3+2)/(2+3) sequential annulation involving a triple nucleophilic addition reaction of Î ³ -vinyl allenoates. Chemical Communications, 2019, 55, 14011-14014.	4.1	19
27	Oneâ€Pot Synthesis of Cyclopropanes from Methylene Azabicyclo[3.1.0]hexanes Obtained by Formal Sequential [1+2]―and [2+3] ycloaddition Reaction of Propâ€2â€ynylsulfonium Salts and Tosylaminomethyl Enones. Advanced Synthesis and Catalysis, 2018, 360, 438-443.	4.3	23
28	Phosphineâ€Catalyzed [3 + 2] Annulation of γ ―Substituted Allenoates: Novel Access to Functionalized Cyclopentenes and Bicyclic[3, 3, 0]octene Derivatives. ChemistrySelect, 2018, 3, 12007-12010.	1.5	20
29	Divergent Domino Reactions of Sulfur Ylides: Access to Functionalized Six- and Seven-Membered Nitrogen–Heterocycles. Organic Letters, 2018, 20, 6715-6718.	4.6	64
30	DBU-Catalyzed Desymmetrization of Cyclohexadienones: Access to Vicinal Diamine-Containing Heterocycles. Organic Letters, 2018, 20, 5006-5009.	4.6	19
31	A Formal [5+1] Annulation Reaction of Sulfur Ylides and 2â€(1 <i>H</i> â€indolâ€2â€yl)phenols: Access to Indoleâ€Fused 4 <i>H</i> â€benzo[<i>e</i>][1,3]oxazines. Advanced Synthesis and Catalysis, 2018, 360, 3044-3048.	4.3	21
32	Phosphineâ€Mediated Sequential Annulation Reaction: Access to Functionalized Benzofurans and 4,5â€Đihydrobenzofurans. Chemistry - A European Journal, 2017, 23, 7882-7886.	3.3	27
33	A phosphine mediated sequential annulation process of 2-tosylaminochalcones with MBH carbonates to construct functionalized aza-benzobicyclo[4.3.0] derivatives. Chemical Communications, 2017, 53, 3974-3977.	4.1	29
34	[3 + 2]-Annulation of Prop-2-ynylsulfonium Salts: Access to Hydroindol-5-ones Containing a Methylthio Group. Organic Letters, 2017, 19, 412-415.	4.6	53
35	Phosphine-Catalyzed Sequential [4 + 3] Domino Annulation/Allylic Alkylation Reaction of MBH Carbonates: Efficient Construction of Seven-Membered Heterocycles. Organic Letters, 2017, 19, 5609-5612.	4.6	79
36	Sequential [1 + 4]- and [2 + 3]-Annulation of Prop-2-ynylsulfonium Salts: Access to Hexahydropyrrolo[3,2- <i>b</i>)indoles. Organic Letters, 2017, 19, 4664-4667.	4.6	31

#	Article	IF	CITATIONS
37	Phosphine-catalyzed intramolecular Rauhut–Currier reaction: enantioselective synthesis of hydro-2H-indole derivatives. Organic and Biomolecular Chemistry, 2017, 15, 7097-7101.	2.8	47
38	Divergent synthesis of hydropyridine derivatives via nitrogen-containing Lewis base mediated regioselective [4 + 2] cyclizations. Organic Chemistry Frontiers, 2017, 4, 2216-2220.	4.5	23
39	Oneâ€Pot Synthesis of Polysubstituted Benzenes through a <i>N</i> , <i>N</i> â€dimethylâ€4â€aminopyridine (DMAP)â€Catalyzed [4+2] Benzannulation of 1,3â€Bis(sulfonyl)butadienes and γâ€Substituted Allenoates. Chemistry - an Asian Journal, 2016, 11, 1512-1517.	3.3	31
40	Phosphine-Catalyzed [3 + 3]-Domino Cycloaddition of Ynones and Azomethine Imines To Construct Functionalized Hydropyridazine Derivatives. Organic Letters, 2016, 18, 2604-2607.	4.6	66
41	Sequential Annulation Domino Reaction of Sulfur Ylides and α,β-Unsaturated Cyclic Ketimines: Synthesis of Cyclic 2-Alkenyl Aziridines. Organic Letters, 2016, 18, 2475-2478.	4.6	45
42	Bifunctionalâ€Phosphineâ€Catalyzed Sequential Annulations of Allenoates and Ketimines: Construction of Functionalized Polyâ€heterocycle Rings. Angewandte Chemie, 2016, 128, 11763-11766.	2.0	22
43	Bifunctionalâ€Phosphineâ€Catalyzed Sequential Annulations of Allenoates and Ketimines: Construction of Functionalized Polyâ€heterocycle Rings. Angewandte Chemie - International Edition, 2016, 55, 11591-11594.	13.8	89
44	Divergent Phosphineâ€Catalyzed [2+4] or [3+2] Cycloaddition Reactions of γâ€Substituted Allenoates with Oxadienes. European Journal of Organic Chemistry, 2015, 2015, 710-714.	2.4	51
45	Morita–Baylis–Hillman adduct derivatives (MBHADs): versatile reactivity in Lewis base-promoted annulation. Organic and Biomolecular Chemistry, 2015, 13, 8578-8595.	2.8	241
46	DABCO-Mediated [4 + 4]-Domino Annulation: Access to Functionalized Eight-Membered Cyclic Ethers. Organic Letters, 2015, 17, 4914-4917.	4.6	42
47	Highly Enantioselective Intermolecular Cross Rauhut–Currier Reaction Catalyzed by a Multifunctional Lewis Base Catalyst. Angewandte Chemie - International Edition, 2015, 54, 1621-1624.	13.8	88
48	Phosphineâ€Catalyzed Domino Reactions: A Route to Functionalized Bicyclic Skeletons. Chemistry - A European Journal, 2014, 20, 3520-3527.	3.3	37
49	Sequential Catalyst Phosphine/Secondary Amine Promoted [1+4]/Rearrangement Domino Reaction for the Construction of (2 <i>H</i>)â€Pyrans and 2â€Oxabicyclo[2.2.2]octâ€5â€ene Skeletons. European Journal of Organic Chemistry, 2014, 2014, 1189-1194.	2.4	32
50	Phosphine-catalyzed sequential annulation domino reaction: rapid construction of bicyclo[4.1.0]heptene skeletons. Chemical Communications, 2014, 50, 5710.	4.1	36
51	Phosphine-catalyzed domino reaction: a novel sequential [2+3] and [3+2] annulation reaction of Î ³ -substituent allenoates to construct bicyclic[3, 3, 0]octene derivatives. Chemical Communications, 2014, 50, 948-950.	4.1	50
52	Phosphine-Catalyzed Sequential [2 +3] and [3 + 2] Annulation Domino Reaction of γ-Benzyl-Substituted Allenoates with α,β-Unsaturated Ketimines To Construct aza-Bicyclo[3,3,0]octane Derivatives. ACS Catalysis, 2014, 4, 600-603.	11.2	70
53	A Sulfur Ylidesâ€Mediated Domino Benzannulation Strategy to Construct Biaryls, Alkenylated and Alkynylated Benzene Derivatives. Advanced Synthesis and Catalysis, 2014, 356, 2422-2428.	4.3	53
54	Phosphineâ€Catalyzed Rauhut–Currier Domino Reaction: A Facile Strategy for the Construction of Carbocyclic Spirooxindoles Skeletons. Chemistry - an Asian Journal, 2013, 8, 1981-1984.	3.3	31

#	Article	IF	CITATIONS
55	Domino Cyclization Initiated by Crossâ€Rauhut–Currier Reactions. European Journal of Organic Chemistry, 2013, 2013, 6213-6226.	2.4	159
56	Phosphine-Catalyzed Domino Reaction: An Efficient Method for the Synthesis of Bicyclo[3.2.0]heptenes Skeleton. Organic Letters, 2013, 15, 5758-5761.	4.6	31
57	One step synthesis of benzoxazepine derivatives via a PPh3 catalyzed aza-MBH domino reaction between salicyl N-tosylimines and allenoates. Chemical Communications, 2013, 49, 10513.	4.1	51
58	Phosphine-Catalyzed Domino Benzannulation: An Efficient Method to Construct Biaryl Skeletons. Organic Letters, 2013, 15, 5064-5067.	4.6	76
59	Tunable Phosphineâ€Mediated Domino Reaction: Selective Synthesis of 2,3â€Dihydrofurans and Biaryls. Advanced Synthesis and Catalysis, 2013, 355, 161-169.	4.3	52
60	Tuning Catalysts to Tune the Products: Phosphine atalyzed Azaâ€Michael Addition Reaction of Hydrazones with Allenoates. Chemistry - an Asian Journal, 2013, 8, 603-610.	3.3	40
61	Phosphine-Catalyzed [4 + 2] Annulation of γ-Substituent Allenoates: Facile Access to Functionalized Spirocyclic Skeletons. Organic Letters, 2013, 15, 3138-3141.	4.6	130
62	Organocatalytic domino reaction of salicyl N-thiophosphoryl imines and methyl vinyl ketone initiated by an aza-MBH reaction with bifunctional phosphine catalysts. RSC Advances, 2012, 2, 8104.	3.6	6
63	Phosphine atalyzed Domino Reaction for the Synthesis of Conjugated 2,3â€Ðihydrofurans from Allenoates and Nazarov Reagents. Chemistry - an Asian Journal, 2012, 7, 1533-1537.	3.3	43
64	Phosphine atalyzed Rauhut–Currier Domino Reaction: A Facile Strategy for the Construction of Highly Functionalized Cyclopentene. Chemistry - an Asian Journal, 2012, 7, 2032-2035.	3.3	31
65	Phosphineâ€Mediated Domino Benzannulation Strategy for the Construction of Highly Functionalized Multiaryl Skeletons. Chemistry - A European Journal, 2012, 18, 7362-7366.	3.3	78
66	Domino Reaction for the Chemo- and Stereoselective Synthesis of <i>trans</i> -2,3-Dihydrobenzofurans from <i>N</i> -Thiophosphinyl Imines and Sulfur Ylides. Journal of Organic Chemistry, 2011, 76, 7699-7705.	3.2	44
67	Bifunctional phosphine-catalyzed cross-Rauhut–Currier/Michael/aldol condensation triple domino reaction: synthesis of functionalized cyclohexenes. Organic and Biomolecular Chemistry, 2011, 9, 6707.	2.8	42
68	Substrateâ€Controlled, Phosphineâ€Catalyzed Domino Reactions of Activated Conjugated Dienes: Highly Diastereoselective Synthesis of Bicyclic Skeletons. Chemistry - A European Journal, 2011, 17, 7418-7422.	3.3	64
69	Phosphine-Catalyzed Domino Reaction: Highly Stereoselective Synthesis of <i>trans</i> -2,3-Dihydrobenzofurans from Salicyl <i>N</i> -Thiophosphinyl Imines and Allylic Carbonates. Organic Letters, 2010, 12, 3768-3771.	4.6	125
70	Bifunctional Phosphine-Catalyzed Domino Reaction: Highly Stereoselective Synthesis of <i>cis</i> -2,3-Dihydrobenzofurans from Salicyl <i>N</i> -Thiophosphinyl Imines and Allenes. Organic Letters, 2009, 11, 137-140.	4.6	112
71	PPh ₃ -Catalyzed Domino Reaction: A Facile Method for the Synthesis of Chroman Derivatives. Organic Letters, 2009, 11, 991-994.	4.6	112
72	A convenient synthesis of 2-alkoxy-2-oxo-1,4,2-oxazaphosphinanes. Heteroatom Chemistry, 2007, 18, 65-69.	0.7	28

#	Article	IF	CITATIONS
73	One-pot synthesis of novel 2′-deoxyuridine derivatives containing α-aminophosphonate moieties. Heteroatom Chemistry, 2007, 18, 230-235.	0.7	14
74	A new convenient way to synthesize 1-hydroxyphosphonates from heterocyclic aldehydes and ketones under microwave irradiation. Heteroatom Chemistry, 2007, 18, 347-353.	0.7	16
75	Synthesis of novel chiral 2-oxo- and 2-thio-1,3,2-oxazaphospholidines via asymmetric cyclization ofL-methionol with (thio)phosphoryl dichlorides. Heteroatom Chemistry, 2005, 16, 33-38.	0.7	26
76	Convenient Synthesis of Analogs of Aminomethylene gemâ€Diphosphonic Acid from Amines Without Catalyst. Synthetic Communications, 2004, 34, 1393-1398.	2.1	17
77	A NEW APPROACH TO THE SYNTHESIS OF 1,3-AMINOALCOHOLS FROMMESOCYCLIC ACID ANHYDRIDE. Organic Preparations and Procedures International, 2003, 35, 429-432.	1.3	4
78	A Novel Synthesis of Allyl Selenides by Reaction of an Organosamarium Reagent With Alkyl Selenocyanates. Synthetic Communications, 2000, 30, 377-381.	2.1	7