
Jonathan S Carp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6907535/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Memory traces in spinal cord. Trends in Neurosciences, 1990, 13, 137-142.	8.6	107
2	Corticospinal tract transection prevents operantly conditioned H-reflex increase in rats. Experimental Brain Research, 2002, 144, 88-94.	1.5	72
3	Operant conditioning of rat H-reflex affects motoneuron axonal conduction velocity. Experimental Brain Research, 2001, 136, 269-273.	1.5	61
4	Plasticity from muscle to brain. Progress in Neurobiology, 2006, 78, 233-263.	5.7	59
5	Dopamine receptor-mediated depression of spinal monosynaptic transmission. Brain Research, 1982, 242, 247-254.	2.2	57
6	Operant conditioning of the primate H-reflex: factors affecting the magnitude of change. Experimental Brain Research, 1993, 97, 31-9.	1.5	54
7	H-Reflex Operant Conditioning in Mice. Journal of Neurophysiology, 2006, 96, 1718-1727.	1.8	48
8	Sensorimotor Cortex Ablation Prevents H-Reflex Up-Conditioning and Causes a Paradoxical Response to Down-Conditioning in Rats. Journal of Neurophysiology, 2006, 96, 119-127.	1.8	41
9	Recovery of Electromyographic Activity After Transection and Surgical Repair of the Rat Sciatic Nerve. Journal of Neurophysiology, 2007, 97, 1127-1134.	1.8	40
10	An In Vitro Protocol for Recording From Spinal Motoneurons of Adult Rats. Journal of Neurophysiology, 2008, 100, 474-481.	1.8	37
11	Operantly Conditioned Plasticity in Spinal Cord. Annals of the New York Academy of Sciences, 1991, 627, 338-348.	3.8	19
12	Diurnal H-reflex variation in mice. Experimental Brain Research, 2006, 168, 517-528.	1.5	17
13	Long-term recording of external urethral sphincter EMG activity in unanesthetized, unrestrained rats. American Journal of Physiology - Renal Physiology, 2014, 307, F485-F497.	2.7	17
14	Memory traces in spinal cord produced by H-reflex conditioning: Effects of post-tetanic potentiation. Neuroscience Letters, 1989, 103, 113-119.	2.1	16
15	Reflex conditioning: a new strategy for improving motor function after spinal cord injury. Annals of the New York Academy of Sciences, 2010, 1198, E12-21.	3.8	14
16	Long-term spinal reflex studies in awake behaving mice. Journal of Neuroscience Methods, 2005, 149, 134-143.	2.5	12
17	Contribution of the external urethral sphincter to urinary void size in unanesthetized unrestrained rats. Neurourology and Urodynamics, 2016, 35, 696-702.	1.5	11
18	Sensorimotor deficits produced by phenytoin and chlorpromazine in unanesthetized cats. Pharmacology Biochemistry and Behavior, 1979, 10, 513-520.	2.9	9

JONATHAN S CARP

#	Article	IF	CITATIONS
19	Conduction velocity is inversely related to action potential threshold in rat motoneuron axons. Experimental Brain Research, 2003, 150, 497-505.	1.5	9
20	Spinal Transection Alters External Urethral Sphincter Activity during Spontaneous Voiding in Freely Moving Rats. Journal of Neurotrauma, 2017, 34, 3012-3026.	3.4	9
21	Spinal and Supraspinal Effects of Long-Term Stimulation of Sensorimotor Cortex in Rats. Journal of Neurophysiology, 2007, 98, 878-887.	1.8	8
22	Constancy of motor axon conduction time during growth in rats. Experimental Brain Research, 1992, 90, 343-5.	1.5	7
23	External Urethral Sphincter Motoneuron Properties in Adult Female Rats Studied In Vitro. Journal of Neurophysiology, 2010, 104, 1286-1300.	1.8	6
24	Effects of chronic nerve cuff and intramuscular electrodes on rat triceps surae motor units. Neuroscience Letters, 2001, 312, 1-4.	2.1	3
25	Temporal transformation of multiunit activity improves identification of single motor units. Journal of Neuroscience Methods, 2002, 114, 87-98.	2.5	3
26	Transmitter and Electrical Stimulation of [3H]Taurine Release from Rat Sympathetic Ganglia. Advances in Experimental Medicine and Biology, 1994, 359, 245-255.	1.6	2
27	A major new dimension in the problem of brain injury. ELife, 2021, 10, .	6.0	1