
Rajalingam Agneeswari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6907441/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Curvature effects of electron-donating polymers on the device performance of non-fullerene organic solar cells. Journal of Power Sources, 2021, 482, 229045.	7.8	12
2	Influence of thiophene and furan π–bridge on the properties of poly(benzodithiophene-alt-bis(π–bridge)pyrrolopyrrole-1,3-dione) for organic solar cell applications. Polymer, 2021, 229, 123991.	3.8	9
3	Wide band-gap organic molecules containing benzodithiophene and difluoroquinoxaline derivatives for solar cell applications. Molecular Crystals and Liquid Crystals, 2019, 685, 29-39.	0.9	2
4	Visible to Nearâ€Infraredâ€Absorbing Polymers Containing Bithiazole and 2,3â€Didodecylâ€6,7â€Difluoroquinoxaline Derivatives for Polymer Solar Cells. Bulletin of the Korean Chemical Society, 2019, 40, 686-690.	1.9	2
5	Side-chain influences on the properties of benzodithiophene-alt-di(thiophen-2-yl)quinoxaline polymers for fullerene-free organic solar cells. Polymer, 2019, 172, 305-311.	3.8	13
6	Synthesis and properties of mono―and diâ€fluoroâ€substituted 2,3â€didodecylquinoxalineâ€based polymers for polymer solar cells. Journal of Polymer Science Part A, 2019, 57, 545-552.	2.3	2
7	Effects of inserting keto-functionalized side-chains instead of imide-functionalized side-chain on the pyrrole backbone of 2,5-bis(2-thienyl)pyrrole-based polymers for organic solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 371, 387-394.	3.9	5
8	Two new tercopolymers incorporating electron-rich benzodithiophene and electron-accepting pyrrolo[3,4-c]pyrrole-1,3-dione and difluorobenzothiadiazole derivatives for polymer solar cells. Polymer Bulletin, 2018, 75, 239-253.	3.3	3
9	Thiophene and thieno[3,2-b]thiophene π-bridged pyrrolo[3,4-c]pyrrole-1,3-dione-based wide band-gap polymers for fullerene and non-fullerene organic solar cells. Organic Electronics, 2018, 63, 78-85.	2.6	9
10	Synthesis of Alkyl‣ubstituted Quinoxalineâ€Based Copolymers Along with Photophysical Property Modulation for Polymer Solar Cells. Macromolecular Chemistry and Physics, 2018, 219, 1800117.	2.2	0
11	PyrroleN-alkyl side chain effects on the properties of pyrrolo[3,4-c]pyrrole-1,3-dione-based polymers for polymer solar cells. New Journal of Chemistry, 2018, 42, 12045-12053.	2.8	6
12	Efficient pyrrolo[3,4-c]pyrrole-1,3-dione-based wide band gap polymer for high-efficiency binary and ternary solar cells. Polymer, 2017, 125, 182-189.	3.8	15
13	Preparation of Two New Diasteromeric Chiral Stationary Phases Based on (+)-(18-Crown-6)-2,3,11,12-tetracarboxylic Acid and (R)- or (S)-1-(1-Naphthyl)ethylamine and Chiral Tethering Group Effect on the Chiral Recognition. Molecules, 2016, 21, 1051.	3.8	5
14	Imide-linked alkyl chain influence on the properties of pyrrole-based imide-functionalized polymers containing pyrrolo[3,4-c]pyrrole-1,3(2H,5H)-dione and benzodithiophene units for polymer solar cells. Synthetic Metals, 2016, 220, 34-40.	3.9	4
15	Property modulation of ternary copolymer via the diverse arrangements of two different repeating units for polymer solar cells and thin film transistors. Polymer, 2016, 95, 18-25.	3.8	7
16	Benzodithiophene based ternary copolymer containing covalently bonded pyrrolo[3,4-c]pyrrole-1,3-dione and benzothiadiazole for efficient polymer solar cells utilizing high energy sunlight. Organic Electronics, 2016, 38, 283-291.	2.6	8
17	Synthesis and optical properties of TDQD and effective CO 2 reduction using a TDQD-photosensitized TiO 2 film. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 330, 30-36.	3.9	9
18	Effects of the incorporation of an additional pyrrolo[3,4-c]pyrrole-1,3-dione unit on the repeating unit of highly efficient large band gap polymers containing benzodithiophene and pyrrolo[3,4-c]pyrrole-1,3-dione derivatives. Organic Electronics, 2016, 30, 253-264.	2.6	14

#	Article	IF	CITATIONS
19	Property modulation of dithienosilole-based polymers via the incorporation of structural isomers of imide- and lactam-functionalized pyrrolo[3,4-c]pyrrole units for polymer solar cells. Polymer, 2015, 65, 243-252.	3.8	15
20	Opto-electrical, charge transport and photovoltaic property modulation of 2,5-di(2-thienyl)pyrrole-based polymers via the incorporation of alkyl, aryl and cyano groups on the pyrrole unit. Polymer Bulletin, 2015, 72, 1899-1919.	3.3	3
21	Benzodithiopheneâ€Based Broad Absorbing Random Copolymers Incorporating Weak and Strong Electron Accepting Imide and Lactam Functionalized Pyrrolo[3,4â€c]pyrrole Derivatives for Polymer Solar Cells. Macromolecular Chemistry and Physics, 2015, 216, 996-1007.	2.2	12
22	Modulation of the properties of pyrrolo[3,4-c]pyrrole-1,4-dione based polymers containing 2,5-di(2-thienyl)pyrrole derivatives with different substitutions on the pyrrole unit. New Journal of Chemistry, 2015, 39, 4658-4669.	2.8	8
23	Photocurrent enhancement of an efficient large band gap polymer incorporating benzodithiophene and weak electron accepting pyrrolo[3,4â^'c]pyrroleâ^1,3â^'dione derivatives via the insertion of a strong electron accepting thieno[3,4â^'b]thiophene unit. Polymer, 2015, 80, 95-103.	3.8	8
24	Tuning the physical properties of pyrrolo[3,4-c]pyrrole-1,3-dione-based highly efficient large band gap polymers via the chemical modification on the polymer backbone for polymer solar cells. RSC Advances, 2015, 5, 99217-99227.	3.6	12
25	Pyrrolo[3,4-c]pyrrole-1,3-dione-based large band gap polymers containing benzodithiophene derivatives for highly efficient simple structured polymer solar cells. Journal of Polymer Science Part A, 2014, 52, n/a-n/a.	2.3	9
26	Linkage position influences of anthracene and tricyanovinyl groups on the opto-electrical and photovoltaic properties of anthracene-based organic small molecules. Tetrahedron, 2014, 70, 1176-1186.	1.9	8
27	Property modulation of benzodithiophene-based polymers via the incorporation of a covalently bonded novel 2,1,3-benzothiadiazole-1,2,4-oxadiazole derivative in their main chain for polymer solar cells. Journal of Materials Chemistry C, 2014, 2, 8515-8524.	5.5	13
28	Highly efficient imide functionalized pyrrolo[3,4-c]pyrrole-1,3-dione-based random copolymer containing thieno[3,4-c]pyrrole-4,6-dione and benzodithiophene for simple structured polymer solar cells. Journal of Materials Chemistry A, 2014, 2, 20126-20132.	10.3	40
29	Synthesis and Characterization of 1,2,4-Oxadiazole-Based Deep-Blue and Blue Color Emitting Polymers. Bulletin of the Korean Chemical Society, 2014, 35, 513-517.	1.9	7
30	A Novel Donor-Acceptor-Acceptor-Acceptor Polymer Containing Benzodithiophene and Benzimidazole-Benzothiadiazole-Benzimidazole for PSCs. Bulletin of the Korean Chemical Society, 2014, 35, 1098-1104.	1.9	5
31	Highâ€performance liquid chromatographic enantioseparation of isoxazolineâ€fused 2â€aminocyclopentanecarboxylic acids on a chiral ligandâ€exchange stationary phase. Journal of Separation Science, 2013, 36, 1335-1342.	2.5	17
32	Synthesis and photovoltaic properties of donor–acceptor polymers incorporating a structurally-novel pyrrole-based imide-functionalized electron acceptor moiety. Polymer, 2013, 54, 6125-6132.	3.8	30
33	Synthesis of polymers containing 1,2,4â€oxadiazole as an electronâ€acceptor moiety in their main chain and their solar cell applications. Journal of Polymer Science Part A, 2013, 51, 2131-2141.	2.3	29
34	Synthesis of N-[4-Octylphenyl]dithieno[3,2-b:2′,3′-d]pyrrole-based broad absorbing polymers and their photovoltaic applications. Polymer, 2013, 54, 3198-3205.	3.8	19
35	Thiadiazoloquinoxaline-Based Low Band Gap Polymer for Solar Cell Applications. Bulletin of the Korean Chemical Society, 2013, 34, 2835-2838.	1.9	0