
Yujing Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6907323/publications.pdf Version: 2024-02-01

YUUNGLU

#	Article	IF	CITATIONS
1	Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science, 2022, 375, 739-745.	12.6	368
2	Rejuvenating dead lithium supply in lithium metal anodes by iodine redox. Nature Energy, 2021, 6, 378-387.	39.5	282
3	In Situ Construction of a LiFâ€Enriched Interface for Stable Allâ€Solidâ€State Batteries and its Origin Revealed by Cryoâ€TEM. Advanced Materials, 2020, 32, e2000223.	21.0	278
4	Atomic Sulfur Covalently Engineered Interlayers of Ti ₃ C ₂ MXene for Ultraâ€Fast Sodiumâ€Ion Storage by Enhanced Pseudocapacitance. Advanced Functional Materials, 2019, 29, 1808107.	14.9	213
5	12 years roadmap of the sulfur cathode for lithium sulfur batteries (2009–2020). Energy Storage Materials, 2020, 30, 346-366.	18.0	189
6	A review of biomass materials for advanced lithium–sulfur batteries. Chemical Science, 2019, 10, 7484-7495.	7.4	180
7	Biomacromolecules enabled dendrite-free lithium metal battery and its origin revealed by cryo-electron microscopy. Nature Communications, 2020, 11, 488.	12.8	158
8	An ultrastable lithium metal anode enabled by designed metal fluoride spansules. Science Advances, 2020, 6, eaaz3112.	10.3	157
9	Interfacial and Ionic Modulation of Poly (Ethylene Oxide) Electrolyte Via Localized Iodization to Enable Dendriteâ€Free Lithium Metal Batteries. Advanced Functional Materials, 2022, 32, .	14.9	77
10	A review of concepts and contributions in lithium metal anode development. Materials Today, 2022, 53, 173-196.	14.2	74
11	A Decade of Progress on Solid tate Electrolytes for Secondary Batteries: Advances and Contributions. Advanced Functional Materials, 2021, 31, 2100891.	14.9	73
12	Sulfur–nitrogen co-doped porous carbon nanosheets to control lithium growth for a stable lithium metal anode. Journal of Materials Chemistry A, 2019, 7, 18267-18274.	10.3	71
13	Functionalizing Single Crystals: Incorporation of Nanoparticles Inside Gelâ€Grown Calcite Crystals. Angewandte Chemie - International Edition, 2014, 53, 4127-4131.	13.8	69
14	Lithium ion diffusion mechanism on the inorganic components of the solid–electrolyte interphase. Journal of Materials Chemistry A, 2021, 9, 10251-10259.	10.3	66
15	Boosting the electron mobility of solution-grown organic single crystals via reducing the amount of polar solvent residues. Materials Horizons, 2016, 3, 119-123.	12.2	64
16	Ambipolar charge transport of TIPS-pentacene single-crystals grown from non-polar solvents. Materials Horizons, 2015, 2, 344-349.	12.2	59
17	Visualizing the Sensitive Lithium with Atomic Precision: Cryogenic Electron Microscopy for Batteries. Accounts of Chemical Research, 2021, 54, 2088-2099.	15.6	59
18	Marrying Ester Group with Lithium Salt: Celluloseâ€Acetateâ€Enabled LiFâ€Enriched Interface for Stable Lithium Metal Anodes. Advanced Functional Materials, 2021, 31, 2102228.	14.9	57

Yujing Liu

#	Article	IF	CITATIONS
19	Nanostructured strategies towards boosting organic lithium-ion batteries. Journal of Energy Chemistry, 2021, 54, 179-193.	12.9	56
20	Empowering Metal Phosphides Anode with Catalytic Attribute toward Superior Cyclability for Lithiumâ€ion Storage. Advanced Functional Materials, 2019, 29, 1809051.	14.9	52
21	Silicious nanowires enabled dendrites suppression and flame retardancy for advanced lithium metal anodes. Nano Energy, 2021, 82, 105723.	16.0	50
22	In-situ construction of a Mg-modified interface to guide uniform lithium deposition for stable all-solid-state batteries. Journal of Energy Chemistry, 2021, 55, 272-278.	12.9	49
23	A fast-ion conducting interface enabled by aluminum silicate fibers for stable Li metal batteries. Chemical Engineering Journal, 2021, 408, 128016.	12.7	48
24	Arrayed silk fibroin for high-performance Li metal batteries and atomic interface structure revealed by cryo-TEM. Journal of Materials Chemistry A, 2020, 8, 26045-26054.	10.3	47
25	Platinum nano-interlayer enhanced interface for stable all-solid-state batteries observed <i>via</i> cryo-transmission electron microscopy. Journal of Materials Chemistry A, 2020, 8, 13541-13547.	10.3	47
26	Strategies to improve the performance of phosphide anodes in sodium-ion batteries. Nano Energy, 2021, 90, 106475.	16.0	45
27	Synthesis of Diverse Green Carbon Nanomaterials through Fully Utilizing Biomass Carbon Source Assisted by KOH. ACS Applied Materials & Interfaces, 2019, 11, 24205-24211.	8.0	42
28	Soybean Protein Fiber Enabled Controllable Li Deposition and a LiF-Nanocrystal-Enriched Interface for Stable Li Metal Batteries. Nano Letters, 2022, 22, 1374-1381.	9.1	41
29	Recent development of Na metal anodes: Interphase engineering chemistries determine the electrochemical performance. Chemical Engineering Journal, 2021, 409, 127943.	12.7	38
30	Solution-Processed 8-Hydroquinolatolithium as Effective Cathode Interlayer for High-Performance Polymer Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 9254-9261.	8.0	37
31	Undervalued Roles of Binder in Modulating Solid Electrolyte Interphase Formation of Silicon-Based Anode Materials. ACS Applied Materials & Interfaces, 2021, 13, 45139-45148.	8.0	36
32	Cryoâ€Electron Microscopy for Unveiling the Sensitive Battery Materials. Small Science, 2021, 1, 2100055.	9.9	35
33	In-Situ Electrodeposition of Nanostructured Carbon Strengthened Interface for Stabilizing Lithium Metal Anode. ACS Nano, 2022, 16, 9883-9893.	14.6	34
34	Bulk-Heterojunction with Long-Range Ordering: C ₆₀ Single-Crystal with Incorporated Conjugated Polymer Networks. Journal of the American Chemical Society, 2020, 142, 1630-1635.	13.7	30
35	Synthesis of NiSe ₂ /Fe ₃ O ₄ Nanotubes with Heteroepitaxy Configuration as a Highâ€Efficient Oxygen Evolution Electrocatalyst. Small Methods, 2022, 6, e2200377.	8.6	22
36	Preparation of quaternarized N-halamine-grafted graphene oxide nanocomposites and synergetic antibacterial properties. Chinese Chemical Letters, 2021, 32, 3509-3513.	9.0	19

Yujing Liu

#	Article	IF	CITATIONS
37	Gel network incorporation into single-crystals: effects of gel structures and crystal–gel interaction. CrystEngComm, 2014, 16, 6901.	2.6	18
38	Incorporating polymers within a singleâ€crystal: From heterogeneous structure to multiple functions. Journal of Polymer Science, 2022, 60, 1151-1173.	3.8	16
39	Patterning the Internal Structure of Single Crystals by Gel Incorporation. Journal of Physical Chemistry C, 2019, 123, 13147-13153.	3.1	15
40	Constructing bulk-contact inside single crystals of organic semiconductors through gel incorporation. CrystEngComm, 2016, 18, 800-806.	2.6	14
41	Visualizing the toughening origins of gel-grown calcite single-crystal composites. Chinese Chemical Letters, 2018, 29, 1666-1670.	9.0	12
42	Pbl ₂ band gap engineering by gel incorporation. Materials Chemistry Frontiers, 2018, 2, 362-368.	5.9	11
43	Synthetic polymer/singleâ€crystal composite. Polymers for Advanced Technologies, 2014, 25, 1189-1194.	3.2	10
44	Incorporation of fluorescent microgels inside calcite single crystals. Giant, 2020, 3, 100023.	5.1	9
45	Materials chemistry among the artificial solid electrolyte interphases of metallic lithium anodes. Materials Chemistry Frontiers, 2021, 5, 5194-5210.	5.9	9
46	Pbl ₂ –TiO ₂ Bulk Heterojunctions with Long-Range Ordering for X-ray Detectors. Journal of Physical Chemistry Letters, 2021, 12, 11176-11181.	4.6	9
47	Enhanced performance of field-effect transistors based on C60 single crystals with conjugated polyelectrolyte. Science China Chemistry, 2017, 60, 490-496.	8.2	8
48	Effect of Aromatic Solvents Residuals on Electron Mobility of Organic Single Crystals. Advanced Electronic Materials, 0, , 2200158.	5.1	2