Martina Hrabinova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6906766/publications.pdf

Version: 2024-02-01

72 papers

1,589 citations

304743

22

h-index

345221 36 g-index

73 all docs 73 docs citations

73 times ranked 2001 citing authors

#	Article	IF	CITATIONS
1	2-Propargylamino-naphthoquinone derivatives as multipotent agents for the treatment of Alzheimer's disease. European Journal of Medicinal Chemistry, 2021, 211, 113112.	5.5	19
2	Alkaloids of Zephyranthes citrina (Amaryllidaceae) and their implication to Alzheimer's disease: Isolation, structural elucidation and biological activity. Bioorganic Chemistry, 2021, 107, 104567.	4.1	20
3	Tacrine and its 7-methoxy derivate; time-change concentration in plasma and brain tissue and basic toxicological profile in rats. Drug and Chemical Toxicology, 2021, 44, 207-214.	2.3	6
4	Phenothiazine-Tacrine Heterodimers: Pursuing Multitarget Directed Approach in Alzheimer's Disease. ACS Chemical Neuroscience, 2021, 12, 1698-1715.	3.5	16
5	Huprine Y – Tryptophan heterodimers with potential implication to Alzheimer's disease treatment. Bioorganic and Medicinal Chemistry Letters, 2021, 43, 128100.	2.2	5
6	Amaryllidaceae Alkaloids of Norbelladine-Type as Inspiration for Development of Highly Selective Butyrylcholinesterase Inhibitors: Synthesis, Biological Activity Evaluation, and Docking Studies. International Journal of Molecular Sciences, 2021, 22, 8308.	4.1	5
7	Pursuing the Complexity of Alzheimer's Disease: Discovery of Fluoren-9-Amines as Selective Butyrylcholinesterase Inhibitors and N-Methyl-d-Aspartate Receptor Antagonists. Biomolecules, 2021, 11, 3.	4.0	4
8	Heterocyclic Cathinones as Inhibitors of Kynurenine Aminotransferase Il—Design, Synthesis, and Evaluation. Pharmaceuticals, 2021, 14, 1291.	3.8	3
9	Discovery of novel berberine derivatives with balanced cholinesterase and prolyl oligopeptidase inhibition profile. European Journal of Medicinal Chemistry, 2020, 203, 112593.	5.5	24
10	Amaryllidaceae Alkaloids of Belladine-Type from Narcissus pseudonarcissus cv. Carlton as New Selective Inhibitors of Butyrylcholinesterase. Biomolecules, 2020, 10, 800.	4.0	21
11	Benzothiazolyl Ureas are Low Micromolar and Uncompetitive Inhibitors of 17β-HSD10 with Implications to Alzheimer's Disease Treatment. International Journal of Molecular Sciences, 2020, 21, 2059.	4.1	14
12	Donepezil and Rivastigmine: Pharmacokinetic Profile and Brain-targeting After Intramuscular Administration in Rats. Iranian Journal of Pharmaceutical Research, 2020, 19, 95-102.	0.5	4
13	Exploring Structure-Activity Relationship in Tacrine-Squaramide Derivatives as Potent Cholinesterase Inhibitors. Biomolecules, 2019, 9, 379.	4.0	23
14	Pharmacological and toxicological in vitro and in vivo effect of higher doses of oxime reactivators. Toxicology and Applied Pharmacology, 2019, 383, 114776.	2.8	5
15	In Vitro and In Silico Acetylcholinesterase Inhibitory Activity of Thalictricavine and Canadine and Their Predicted Penetration across the Blood-Brain Barrier. Molecules, 2019, 24, 1340.	3.8	23
16	Derivatives of the β-Crinane Amaryllidaceae Alkaloid Haemanthamine as Multi-Target Directed Ligands for Alzheimer's Disease. Molecules, 2019, 24, 1307.	3.8	22
17	Novel tacrine-tryptophan hybrids: Multi-target directed ligands as potential treatment for Alzheimer's disease. European Journal of Medicinal Chemistry, 2019, 168, 491-514.	5.5	75
18	Alkaloids from Narcissus poeticus cv. Pink Parasol of various structural types and their biological activity. Archives of Pharmacal Research, 2018, 41, 208-218.	6.3	35

#	Article	IF	CITATIONS
19	Synthesis, Biological Evaluation, and Docking Studies of Novel Bisquaternary Aldoxime Reactivators on Acetylcholinesterase and Butyrylcholinesterase Inhibited by Paraoxon. Molecules, 2018, 23, 1103.	3.8	11
20	Development of small bisquaternary cholinesterase inhibitors as drugs for pre-treatment of nerve agent poisonings. Drug Design, Development and Therapy, 2018, Volume 12, 505-512.	4.3	4
21	In vitro and in silico Evaluation of Non-Quaternary Reactivators of AChE as Antidotes of Organophosphorus Poisoning - a New Hope or a Blind Alley?. Medicinal Chemistry, 2018, 14, 281-292.	1.5	19
22	Tacrine-resveratrol fused hybrids as multi-target-directed ligands against Alzheimer's disease. European Journal of Medicinal Chemistry, 2017, 127, 250-262.	5.5	95
23	Novel Tacrine-Scutellarin Hybrids as Multipotent Anti-Alzheimer's Agents: Design, Synthesis and Biological Evaluation. Molecules, 2017, 22, 1006.	3.8	32
24	Cholinesterase and Prolyl Oligopeptidase Inhibitory Activities of Alkaloids from Argemone platyceras (Papaveraceae). Molecules, 2017, 22, 1181.	3.8	19
25	Development of 2-Methoxyhuprine as Novel Lead for Alzheimer's Disease Therapy. Molecules, 2017, 22, 1265.	3.8	26
26	Design, Synthesis and in vitro Evaluation of Indolotacrine Analogues as Multitargetâ€Directed Ligands for the Treatment of Alzheimer's Disease. ChemMedChem, 2016, 11, 1264-1269.	3.2	35
27	Targeting copper(II)-induced oxidative stress and the acetylcholinesterase system in Alzheimer's disease using multifunctional tacrine-coumarin hybrid molecules. Journal of Inorganic Biochemistry, 2016, 161, 52-62.	3.5	63
28	Isoquinoline Alkaloids from <i>Fumaria officinalis</i> L. and Their Biological Activities Related to <i>Alzheimer</i> 's Disease. Chemistry and Biodiversity, 2016, 13, 91-99.	2.1	30
29	Isolation of Amaryllidaceae alkaloids from Nerine bowdenii W. Watson and their biological activities. RSC Advances, 2016, 6, 80114-80120.	3.6	23
30	7-Methoxytacrine-p-Anisidine Hybrids as Novel Dual Binding Site Acetylcholinesterase Inhibitors for Alzheimer's Disease Treatment. Molecules, 2015, 20, 22084-22101.	3.8	35
31	(+)-Chenabinol (Revised NMR Data) and Two New Alkaloids from <i>Berberis vulgaris</i> Biological Activity. Natural Product Communications, 2015, 10, 1934578X1501001.	0.5	1
32	Alkaloids from Peumus boldus and their Acetylcholinesterase, Butyrylcholinesterase and Prolyl Oligopeptidase Inhibition Activity. Natural Product Communications, 2015, 10, 1934578X1501000.	0.5	6
33	Isoquinoline alkaloids as prolyl oligopeptidase inhibitors. Fìtoterapìâ, 2015, 103, 192-196.	2.2	23
34	Tacrine–Trolox Hybrids: A Novel Class of Centrally Active, Nonhepatotoxic Multi-Target-Directed Ligands Exerting Anticholinesterase and Antioxidant Activities with Low In Vivo Toxicity. Journal of Medicinal Chemistry, 2015, 58, 8985-9003.	6.4	121
35	Alkaloids from Peumus boldus and their acetylcholinesterase, butyrylcholinesterase and prolyl oligopeptidase inhibition activity. Natural Product Communications, 2015, 10, 577-80.	0.5	9
36	Impact of tacrine and 7-methoxytacrine on gastric myoelectrical activity assessed using electrogastrography in experimental pigs. Neuroendocrinology Letters, 2015, 36 Suppl 1, 150-5.	0.2	2

3

#	Article	IF	CITATIONS
37	Chemical Composition of Bioactive Alkaloid Extracts from Some Narcissus Species and Varieties and their Biological Activity. Natural Product Communications, 2014, 9, 1934578X1400900.	0.5	5
38	Synthesis and Biological Evaluation of Novel Tacrine Derivatives and Tacrine–Coumarin Hybrids as Cholinesterase Inhibitors. Journal of Medicinal Chemistry, 2014, 57, 7073-7084.	6.4	99
39	Revised NMR data for 9-O-demethylgalanthine: an alkaloid from Zephyranthes robusta (Amaryllidaceae) and its biological activity. Natural Product Communications, 2014, 9, 787-8.	0.5	15
40	Chemical composition of bioactive alkaloid extracts from some Narcissus species and varieties and their biological activity. Natural Product Communications, 2014, 9, 1151-5.	0.5	9
41	Preparation, in vitro evaluation and molecular modelling of pyridinium–quinolinium/isoquinolinium non-symmetrical bisquaternary cholinesterase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 6663-6666.	2.2	11
42	Alkaloids from Chlidanthus fragrans and their Acetylcholinesterase, Butyrylcholinesterase and Prolyl Oligopeptidase Activities. Natural Product Communications, 2013, 8, 1934578X1300801.	0.5	14
43	Structure-Activity Relationship for the Reactivators of Acetylcholinesterase Inhibited by Nerve Agent VX. Medicinal Chemistry, 2013, 9, 689-693.	1.5	4
44	Impact of paraoxon followed by acetylcholinesterase reactivator HI-6 on gastric myoelectric activity in experimental pigs. Neuroendocrinology Letters, 2013, 34 Suppl 2, 79-83.	0.2	4
45	Alkaloids from Chlidanthus fragrans and their acetylcholinesterase, butyrylcholinesterase and prolyl oligopeptidase activities. Natural Product Communications, 2013, 8, 1541-4.	0.5	20
46	Synthesis, design and biological evaluation of novel highly potent tacrine congenersÂfor the treatment of Alzheimer's disease. European Journal of Medicinal Chemistry, 2012, 55, 23-31.	5.5	27
47	Asoxime (HI-6) impact on dogs after one and tenfold therapeutic doses: Assessment of adverse effects, distribution, and oxidative stress. Environmental Toxicology and Pharmacology, 2011, 32, 75-81.	4.0	11
48	TLC analysis of twelve different salts of oxime HI-6 $\hat{a}\in$ " Reactivator of nerve agent inhibited AChE. Journal of Planar Chromatography - Modern TLC, 2011, 24, 105-107.	1.2	0
49	Preparation, in vitro screening and molecular modelling of symmetrical 4-tert-butylpyridinium cholinesterase inhibitors—Analogues of SAD-128. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 150-154.	2.2	16
50	Preparation and in vitro screening of symmetrical bis-isoquinolinium cholinesterase inhibitors bearing various connecting linkage – Implications for early Myasthenia gravis treatment. European Journal of Medicinal Chemistry, 2011, 46, 811-818.	5.5	33
51	The preparation, <i>in vitro</i> screening and molecular docking of symmetrical bisquaternary cholinesterase inhibitors containing a but-(2E)-en-1,4-diyl connecting linkage. Journal of Enzyme Inhibition and Medicinal Chemistry, 2011, 26, 245-253.	5.2	9
52	Assessment of Acetylcholinesterase Activity Using Indoxylacetate and Comparison with the Standard Ellman's Method. International Journal of Molecular Sciences, 2011, 12, 2631-2640.	4.1	125
53	ON THE UNIVERSALITY OF OXIME HLö-7 - ANTIDOTE FOR CASE OF THE NERVE AGENT POISONING. Military Medical Science Letters (Vojenske Zdravotnicke Listy), 2011, 80, 80-84.	0.5	4
54	Preparation and in vitro screening of symmetrical bispyridinium cholinesterase inhibitors bearing different connecting linkage—initial study for Myasthenia gravis implications. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 1763-1766.	2.2	36

#	Article	IF	Citations
55	Oxime K027: novel low-toxic candidate for the universal reactivator of nerve agent- and pesticide-inhibited acetylcholinesterase. Journal of Enzyme Inhibition and Medicinal Chemistry, 2010, 25, 509-512.	5.2	26
56	New Bisquaternary Isoquinolinium Inhibitors of Brain Cholinesterases - Synthesis and Anticholinesterase Activity. Letters in Drug Design and Discovery, 2010, 7, 1-4.	0.7	4
57	Novel Nucleophilic Compounds with Oxime Group as Reactivators of Paraoxon-Inhibited Cholinesterases. Letters in Drug Design and Discovery, 2010, 7, 260-264.	0.7	3
58	Evaluation of Cholinesterase Activities During in Vivo Intoxication Using an Electrochemical Sensor Strip – Correlation With Intoxication Symptoms. Sensors, 2009, 9, 3627-3634.	3.8	8
59	Reactivation of Human Brain Homogenate Cholinesterases Inhibited by Tabun using Newly Developed Oximes K117 and K127. Basic and Clinical Pharmacology and Toxicology, 2009, 105, 207-210.	2.5	8
60	Novel Bisquaternary Oximesâ€"Reactivation of Acetylcholinesterase and Butyrylcholinesterase Inhibited by Paraoxon. Molecules, 2009, 14, 4915-4921.	3.8	17
61	Diagnosis of Intoxication by the Organophosphate VX: Comparison Between an Electrochemical Sensor and Ellman´s Photometric Method. Sensors, 2008, 8, 5229-5237.	3.8	28
62	Potency of Five Structurally Different Acetylcholinesterase Reactivators to Reactivate Human Brain Cholinesterases Inhibited by Cyclosarin. Clinical Toxicology, 2007, 45, 512-515.	1.9	8
63	Twelve Different HI-6 Salts and their Potency to Reactivate Cyclosarin Inhibited AChE In Vitro. Letters in Drug Design and Discovery, 2007, 4, 510-512.	0.7	13
64	Targeted Synthesis of 1-(4-Hydroxyiminomethylpyridinium)-3-pyridiniumpropane Dibromide $\hat{a}\in$ A New Nerve Agent Reactivator. Molecules, 2007, 12, 1964-1972.	3.8	15
65	Preparation of Benzalkonium Salts Differing in the Length of a Side Alkyl Chain. Molecules, 2007, 12, 2341-2347.	3.8	19
66	In Vitro Potency of H Oximes (HI-6, HLö-7), the Oxime BI-6, and Currently Used Oximes (Pralidoxime,) Tj ETQq0 C of Toxicology and Environmental Health - Part A: Current Issues, 2006, 69, 1431-1440.	0 0 rgBT /C 2.3	Overlock 10 T 9
67	In VitroEvaluation of Acetylcholinesterase Reactivators as Potential Antidotes Against Tabun Nerve Agent Poisonings. Drug and Chemical Toxicology, 2006, 29, 443-449.	2.3	12
68	New group of xylene linker-containing acetylcholinesterase reactivators as antidotes against the nerve agent cyclosarin. Journal of Enzyme Inhibition and Medicinal Chemistry, 2006, 21, 515-519.	5.2	8
69	Potency of new structurally different oximes to reactivate cyclosarin-inhibited human brain acetylcholinesterases. Journal of Enzyme Inhibition and Medicinal Chemistry, 2006, 21, 663-666.	5.2	26
70	Russian VX: Inhibition and Reactivation of Acetylcholinesterase Compared with VX Agent. Basic and Clinical Pharmacology and Toxicology, 2006, 98, 389-394.	2.5	36
71	Comparison ofin vitro potency of oximes (pralidoxime, obidoxime, HI-6) to reactivate sarin-inhibited acetylcholinesterase in various parts of pig brain. Journal of Applied Toxicology, 2005, 25, 271-276.	2.8	12
72	A Comparison of the Potency of the Oxime HLö-7 and Currently Used Oximes (HI-6, Pralidoxime,) Tj ETQq0 0 0 rg	gBT /Overl 0.5	ock 10 Tf 50 17

Acta Medica (Hradec Kralove), 2005, 48, 81-86.