## Yu Dai

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6906701/publications.pdf

Version: 2024-02-01



<u>ΥΠ ΠΑΙ</u>

| #  | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Fabrication of high-temperature aromatic polyamides with ultra-high breakdown strength via complex-assisted chain arrangement. Chemical Engineering Journal, 2022, 432, 134407.                                                                  | 12.7 | 8         |
| 2  | Preparation of High Strength and Toughness Aramid Fiber by Introducing Flexible Asymmetric<br>Monomer to Construct Misplacedâ€Nunchaku Structure. Macromolecular Materials and Engineering,<br>2021, 306, 2000814.                               | 3.6  | 12        |
| 3  | Post-construction of weaving structure in aramid fiber towards improvements of its transverse properties. Composites Science and Technology, 2021, 208, 108780.                                                                                  | 7.8  | 14        |
| 4  | Constructing "Rigid-and-Soft―interlocking stereoscopic interphase structure of aramid fiber<br>composites with high interfacial shear strength and toughness. Composites Part A: Applied Science<br>and Manufacturing, 2021, 145, 106386.        | 7.6  | 20        |
| 5  | Câ^'N Coupling Reactions on Graphene with Aromatic Macromolecules and the Spatial Conformation of Grafted Macromolecules. Chemistry - A European Journal, 2020, 26, 1819-1826.                                                                   | 3.3  | 4         |
| 6  | Constructing mainstay-body structure in heterocyclic aramid fiber to simultaneously improve tensile strength and toughness. Composites Part B: Engineering, 2020, 202, 108411.                                                                   | 12.0 | 28        |
| 7  | Construction of dendritic structure by nano-SiO2 derivate grafted with hyperbranched polyamide in aramid fiber to simultaneously improve its mechanical and compressive properties. European Polymer Journal, 2019, 119, 367-375.                | 5.4  | 20        |
| 8  | Constructing a weaving structure for aramid fiber by carbon nanotube-based network to<br>simultaneously improve composites interfacial properties and compressive properties. Composites<br>Science and Technology, 2019, 182, 107721.           | 7.8  | 22        |
| 9  | Self-enhancement in aramid fiber by filling free hydrogen bonding interaction sites in macromolecular chains with its oligomer. Polymer, 2019, 180, 121687.                                                                                      | 3.8  | 19        |
| 10 | Fast and efficient oil-water separation under harsh conditions of the flexible polyimide aerogel<br>containing benzimidazole structure. Colloids and Surfaces A: Physicochemical and Engineering<br>Aspects, 2019, 581, 123809.                  | 4.7  | 30        |
| 11 | Improving Compressive Strength of Aramid Fiber by Introducing Carbon Nanotube Derivates Grafted<br>with Oligomers of Different Conformations and Controlling Its Alignment. Macromolecular<br>Materials and Engineering, 2019, 304, 1900127.     | 3.6  | 5         |
| 12 | Preparation of novel aramid film with ultra-high breakdown strength via constructing<br>three-dimensional covalent crosslinked structure. Chemical Engineering Journal, 2019, 375, 122042.                                                       | 12.7 | 13        |
| 13 | Improving Interfacial and Compressive Properties of Aramid by Synchronously Grafting and Crosslinking. Macromolecular Materials and Engineering, 2019, 304, 1900044.                                                                             | 3.6  | 5         |
| 14 | Synthesis of A Novel Crossâ€linker with High Reactivity for Enhancing Compressive Strength of<br>Highâ€performance Organic Fibers. ChemistrySelect, 2019, 4, 3980-3983.                                                                          | 1.5  | 2         |
| 15 | Nondestructive modification of aramid fiber based on selective reaction of external cross-linker to<br>improve interfacial shear strength and compressive strength. Composites Part A: Applied Science and<br>Manufacturing, 2019, 119, 217-224. | 7.6  | 19        |
| 16 | Dissolution of Aramid by Ionization of Byproduct HCl Promoted by Acetate. ChemistrySelect, 2019, 4, 123-129.                                                                                                                                     | 1.5  | 4         |
| 17 | Aramid fiber with excellent interfacial properties suitable for resin composite in a wide polarity range. Chemical Engineering Journal, 2018, 347, 483-492.                                                                                      | 12.7 | 88        |
| 18 | Highly improved Uv resistance and composite interfacial properties of aramid fiber via iron (III) coordination. Applied Surface Science, 2018, 434, 473-480.                                                                                     | 6.1  | 42        |

Yu Dai

| #  | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Benzimidazole-containing aramid nanofiber for naked-eye detection of heavy metal ions. Analyst, The, 2018, 143, 5225-5233.                                                                                                                                 | 3.5 | 12        |
| 20 | In Situ Complex with byâ€product HCl and Release Chloride Ions to Dissolve Aramid. ChemPhysChem, 2018, 19, 2468-2471.                                                                                                                                      | 2.1 | 6         |
| 21 | The introduction of asymmetric heterocyclic units into poly(p-phenylene terephthalamide) and its effect on microstructure, interactions and properties. Journal of Materials Science, 2018, 53, 13291-13303.                                               | 3.7 | 41        |
| 22 | Synthesis of Heterocyclic Aramid Fiber Based on Solidâ€Phase Crossâ€Linking of Oligomers with Reactive<br>End Group. Macromolecular Materials and Engineering, 2018, 303, 1800076.                                                                         | 3.6 | 15        |
| 23 | A facile strategy for fabricating aramid fiber with simultaneously high compressive strength and high<br>interfacial shear strength through cross-linking promoted by oxygen. Composites Part A: Applied<br>Science and Manufacturing, 2018, 113, 233-241. | 7.6 | 26        |
| 24 | The novel high performance aramid fibers containing benzimidazole moieties and chloride substitutions. Materials and Design, 2018, 158, 127-135.                                                                                                           | 7.0 | 30        |
| 25 | Fe3+ coordination induced selective fluorination of aramid fiber to suppress surface chain scission behavior and improve surface polarity. Applied Surface Science, 2018, 456, 221-229.                                                                    | 6.1 | 11        |
| 26 | Control of Head/Tail Isomeric Structure in Polyimide and Isomerismâ€Derived Difference in Molecular<br>Packing and Properties. Macromolecular Rapid Communications, 2017, 38, 1700404.                                                                     | 3.9 | 30        |

3